Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multiplatform tear proteomic profiling reveals novel non-invasive biomarkers for diabetic retinopathy

Abstract

Objectives

To investigate a comprehensive proteomic profile of the tear fluid in patients with diabetic retinopathy (DR) and further define non-invasive biomarkers.

Methods

A cross-sectional, multicentre study that includes 46 patients with DR, 28 patients with diabetes mellitus (DM), and 30 healthy controls (HC). Tear samples were collected with Schirmer strips. As for the discovery set, data-independent acquisition mass spectrometry was used to characterize the tear proteomic profile. Differentially expressed proteins between groups were identified, with gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes enrichment analysis further developed. Classifying performance of biomarkers for distinguishing DR from DM was compared by the combination of three machine-learning algorithms. The selected biomarker panel was tested in the validation cohort using parallel reaction monitoring mass spectrometry.

Results

Among 3364 proteins quantified, 235 and 88 differentially expressed proteins were identified for DR when compared to HC and DM, respectively, which were fundamentally related to retina homeostasis, inflammation and immunity, oxidative stress, angiogenesis and coagulation, metabolism, and cellular adhesion processes. The biomarker panel consisting of NAD-dependent protein deacetylase sirtuin-2 (SIR2), amine oxidase [flavin-containing] B (AOFB), and U8 snoRNA-decapping enzyme (NUD16) exhibited the best diagnostic performance in discriminating DR from DM, with AUCs of 0.933 and 0.881 in the discovery and validation set, respectively.

Conclusions

Tear protein dysregulation is comprehensively revealed to be associated with DR onset. The combination of tear SIR2, AOFB, and NUD16 can be a novel potential approach for non-invasive detection or pre-screening of DR.

Clinical trial registration

Chinese Clinical Trial Registry Identifier: ChiCTR2100054263. https://www.chictr.org.cn/showproj.html?proj=143177. Date of registration: 2021/12/12.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study flow chart and differentially expressed proteins.
Fig. 2: Gene ontology enrichment analysis.
Fig. 3: Kyoto Encyclopedia of Genes and Genomes enrichment analysis.
Fig. 4: Results of biomarker selection and validation for discriminating diabetic retinopathy from diabetes mellitus.

Similar content being viewed by others

Data availability

Deidentified individual participant data will be made available.

References

  1. Mohamed Q, Gillies MC, Wong TY. Management of diabetic retinopathy: a systematic review. Jama. 2007;298:902–16.

    Article  CAS  PubMed  Google Scholar 

  2. Wong TY, Cheung CM, Larsen M, Sharma S, Simó R. Diabetic retinopathy. Nat Rev Dis Prim. 2016;2:16012.

    Article  PubMed  Google Scholar 

  3. Kollias AN, Ulbig MW. Diabetic retinopathy: Early diagnosis and effective treatment. Dtsch Arztebl Int. 2010;107:75–83.

    PubMed  PubMed Central  Google Scholar 

  4. Lem DW, Gierhart DL, Davey PG. A systematic review of carotenoids in the management of diabetic retinopathy. Nutrients. 2021;13:2441.

  5. Wang LZ, Cheung CY, Tapp RJ, Hamzah H, Tan G, Ting D, et al. Availability and variability in guidelines on diabetic retinopathy screening in Asian countries. Br J Ophthalmol. 2017;101:1352–60.

    Article  PubMed  Google Scholar 

  6. Wong TY, Sabanayagam C. Strategies to tackle the global burden of diabetic retinopathy: from epidemiology to artificial intelligence. Ophthalmologica. 2020;243:9–20.

    Article  CAS  PubMed  Google Scholar 

  7. Ponzini E, Santambrogio C, De Palma A, Mauri P, Tavazzi S, Grandori R. Mass spectrometry-based tear proteomics for noninvasive biomarker discovery. Mass Spectrom Rev. 2022;41:842–60.

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Kim HJ, Kim PK, Yoo HS, Kim CW. Comparison of tear proteins between healthy and early diabetic retinopathy patients. Clin Biochem. 2012;45:60–7.

    Article  CAS  PubMed  Google Scholar 

  9. Csősz É, Boross P, Csutak A, Berta A, Tóth F, Póliska S, et al. Quantitative analysis of proteins in the tear fluid of patients with diabetic retinopathy. J Proteom. 2012;75:2196–204.

    Article  Google Scholar 

  10. Csősz É, Deák E, Kalló G, Csutak A, Tőzsér J. Diabetic retinopathy: Proteomic approaches to help the differential diagnosis and to understand the underlying molecular mechanisms. J Proteom. 2017;150:351–8.

    Article  Google Scholar 

  11. Kiyonami R, Schoen A, Prakash A, Peterman S, Zabrouskov V, Picotti P, et al. Increased selectivity, analytical precision, and throughput in targeted proteomics. Mol Cell Proteom. 2011;10:M110.002931.

    Article  Google Scholar 

  12. Michalski A, Cox J, Mann M. More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. J Proteome Res. 2011;10:1785–93.

    Article  CAS  PubMed  Google Scholar 

  13. Kitata RB, Yang JC, Chen YJ. Advances in data-independent acquisition mass spectrometry towards comprehensive digital proteome landscape. Mass Spectrom Rev. 2023;42:2324–48.

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Zhu Y, Bian JF, Lu DQ, To CH, Lam CS, Li KK, et al. Alteration of EIF2 signaling, glycolysis, and dopamine secretion in form-deprived myopia in response to 1% atropine treatment: evidence from interactive iTRAQ-MS and SWATH-MS proteomics using a guinea pig model. Front Pharm. 2022;13:814814.

    Article  CAS  Google Scholar 

  15. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. Jama, 2013;310:2191–4.

  16. Wilkinson CP, Ferris FL 3rd, Klein RE, Lee PP, Agardh CD, Davis M, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003;110:1677–82.

    Article  CAS  PubMed  Google Scholar 

  17. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2011;34:S62–9.

    Article  PubMed Central  Google Scholar 

  18. Li N, Deng XG, He MF. Comparison of the Schirmer I test with and without topical anesthesia for diagnosing dry eye. Int J Ophthalmol. 2012;5:478–81.

    PubMed  PubMed Central  Google Scholar 

  19. Benito MJ, González-García MJ, Tesón M, García N, Fernández I, Calonge M, et al. Intra- and inter-day variation of cytokines and chemokines in tears of healthy subjects. Exp Eye Res. 2014;120:43–9.

    Article  CAS  PubMed  Google Scholar 

  20. Arroyo CA, Byambajav M, Fernández I, Martin E, González-García MJ, López-Miguel A, et al. Diurnal variation on tear stability and correlation with tear cytokine concentration. Cont Lens Anterior Eye. 2022;45:101705.

    Article  PubMed  Google Scholar 

  21. Lin L, Zheng J, Yu Q, Chen W, Xing J, Chen C, et al. High throughput and accurate serum proteome profiling by integrated sample preparation technology and single-run data independent mass spectrometry analysis. J Proteom. 2018;174:9–16.

    Article  CAS  Google Scholar 

  22. Zheng X, Xu K, Zhou B, Chen T, Huang Y, Li Q, et al. A circulating extracellular vesicles-based novel screening tool for colorectal cancer revealed by shotgun and data-independent acquisition mass spectrometry. J Extracell Vesicles. 2020;9:1750202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Camino T, Lago-Baameiro N, Bravo SB, Molares-Vila A, Sueiro A, Couto I, et al. Human obese white adipose tissue sheds depot-specific extracellular vesicles and reveals candidate biomarkers for monitoring obesity and its comorbidities. Transl Res. 2022;239:85–102.

    Article  CAS  PubMed  Google Scholar 

  24. López-López M, Regueiro U, Bravo SB, Chantada-Vázquez MDP, Varela-Fernández R, Ávila-Gómez P, et al. Tear proteomics in keratoconus: a quantitative SWATH-MS analysis. Invest Ophthalmol Vis Sci. 2021;62:30.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sonntag J, Bender C, Soons Z, Heyde S, Korf U. Reverse phase protein array based tumor profiling identifies a biomarker signature for risk classification of hormone receptor-positive breast cancer. Transl Proteom. 2014;2:52–59.

    CAS  Google Scholar 

  26. Ortea I, Ruiz-Sánchez I, Cañete R, Caballero-Villarraso J, Cañete MD. Identification of candidate serum biomarkers of childhood-onset growth hormone deficiency using SWATH-MS and feature selection. J Proteom. 2018;175:105–13.

    Article  CAS  Google Scholar 

  27. Yu H, Luo H, Chang L, Wang S, Geng X, Kang L, et al. The NEDD8-activating enzyme inhibitor MLN4924 reduces ischemic brain injury in mice. Proc Natl Acad Sci USA. 2022;119:e2111896119.

  28. Youngblood H, Robinson R, Sharma A, Sharma S. Proteomic biomarkers of retinal inflammation in diabetic retinopathy. Int J Mol Sci. 2019;20:4755.

  29. Techatanawat S, Surarit R, Chairatvit K, Roytrakul S, Khovidhunkit W, Thanakun S, et al. Salivary and serum cystatin SA levels in patients with type 2 diabetes mellitus or diabetic nephropathy. Arch Oral Biol. 2019;104:67–75.

    Article  CAS  PubMed  Google Scholar 

  30. Semeraro F, Cancarini A, Dell’omo R, Rezzola S, Romano MR, Costagliola C. Diabetic retinopathy: vascular and inflammatory disease. J Diabetes Res. 2015;2015:582060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Biswas S, Sarabusky M, Chakrabarti S. Diabetic retinopathy, lncRNAs, and inflammation: a dynamic, interconnected network. J Clin Med. 2019;8:1033.

  32. Rübsam A, Parikh S, Fort PE. Role of inflammation in diabetic retinopathy. Int J Mol Sci. 2018;19:942.

  33. Murakami Y, Ishikawa K, Nakao S, Sonoda KH. Innate immune response in retinal homeostasis and inflammatory disorders. Prog Retin Eye Res. 2020;74:100778.

    Article  CAS  PubMed  Google Scholar 

  34. Flyvbjerg A. Diabetic angiopathy, the complement system and the tumor necrosis factor superfamily. Nat Rev Endocrinol. 2010;6:94–101.

    Article  CAS  PubMed  Google Scholar 

  35. Binet F, Cagnone G, Crespo-Garcia S, Hata M, Neault M, Dejda A, et al. Neutrophil extracellular traps target senescent vasculature for tissue remodeling in retinopathy. Science. 2020;369:6506.

    Article  Google Scholar 

  36. Kang Q, Yang C. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol. 2020;37:101799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Al-Shabrawey M, Rojas M, Sanders T, Behzadian A, El-Remessy A, Bartoli M, et al. Role of NADPH oxidase in retinal vascular inflammation. Invest Ophthalmol Vis Sci. 2008;49:3239–44.

    Article  PubMed  Google Scholar 

  38. Al-Shabrawey M, Bartoli M, El-Remessy AB, Ma G, Matragoon S, Lemtalsi T, et al. Role of NADPH oxidase and Stat3 in statin-mediated protection against diabetic retinopathy. Invest Ophthalmol Vis Sci. 2008;49:3231–8.

    Article  PubMed  Google Scholar 

  39. Hou XW, Wang Y, Pan CW. Metabolomics in diabetic retinopathy: a systematic review. Invest Ophthalmol Vis Sci. 2021;62:4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang J, Wang Z, Zhang Y, Li J. Proteomic analysis of vitreal exosomes in patients with proliferative diabetic retinopathy. Eye (Lond). 2022;37:2061–8.

  41. Tzekov R, Stein L, Kaushal S. Protein misfolding and retinal degeneration. Cold Spring Harb Perspect Biol. 2011;3:a007492.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jr DWH, Lemeshow S, Sturdivant RX. Applied Logistic Regression, Third Edition[M]. 2013.

  43. Watanabe H, Inaba Y, Kimura K, Matsumoto M, Kaneko S, Kasuga M, et al. Sirt2 facilitates hepatic glucose uptake by deacetylating glucokinase regulatory protein. Nat Commun. 2018;9:30.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  44. Schartner E, Sabbir MG, Saleh A, Silva RV, Roy Chowdhury S, Smith DR, et al. High glucose concentration suppresses a SIRT2 regulated pathway that enhances neurite outgrowth in cultured adult sensory neurons. Exp Neurol. 2018;309:134–47.

    Article  CAS  PubMed  Google Scholar 

  45. Taneja A, Ravi V, Hong JY, Lin H, Sundaresan NR. Emerging roles of Sirtuin 2 in cardiovascular diseases. Faseb J. 2021;35:e21841.

    Article  CAS  PubMed  Google Scholar 

  46. Duicu OM, Lighezan R, Sturza A, Balica R, Vaduva A, Feier H, et al. Assessment of mitochondrial dysfunction and monoamine oxidase contribution to oxidative stress in human diabetic hearts. Oxid Med Cell Longev. 2016;2016:8470394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sturza A, Duicu OM, Vaduva A, Dănilă MD, Noveanu L, Varró A, et al. Monoamine oxidases are novel sources of cardiovascular oxidative stress in experimental diabetes. Can J Physiol Pharm. 2015;93:555–61.

    Article  CAS  Google Scholar 

  48. Abolhassani N, Iyama T, Tsuchimoto D, Sakumi K, Ohno M, Behmanesh M, et al. NUDT16 and ITPA play a dual protective role in maintaining chromosome stability and cell growth by eliminating dIDP/IDP and dITP/ITP from nucleotide pools in mammals. Nucleic Acids Res. 2010;38:2891–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Peng S, Guo P, Lin X, An Y, Sze KH, Lau MHY, et al. CAG RNAs induce DNA damage and apoptosis by silencing NUDT16 expression in polyglutamine degeneration. Proc Natl Acad Sci USA. 2021;118:e2022940118.

Download references

Acknowledgements

The authors thank the support of colleagues from Shenmei Eye Hospital, the Seventh Affiliated Hospital of Sun Yat-Sen University, and Sustech Core Research Facilities of Southern University of Science and Technology. This study was supported by National Natural Science Foundation of China (No. 82271103), Guangdong Basic and Applied Basic Research Foundation (No. 2022A1515012326), Shenzhen Key Medical Discipline Construction Fund (No. SZXK038), and Shenzhen Fund for Guangdong Provincial High-level Clinical Key Specialties (No. SZGSP014).

Funding

The funding organizations had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design, Administrative support, and Provision of study materials or patients: Guoming Zhang. Conception and design, Collection and assembly of data, Data analysis and Interpretation, and Manuscript writing: Zixin Fan. Administrative support and Provision of study materials or patients: Dahui Ma. Administrative support and Provision of study materials or patients: Zhiqiang Li. Collection and assembly of data, and Data analysis and interpretation: Yarou Hu. Collection and assembly of data: Laijiao Chen. Collection and assembly of data: Xiaofeng Lu. Collection and assembly of data: Lei Zheng. Collection and assembly of data: Jingwen Zhong. Collection and assembly of data and Data analysis and interpretation: Lin Lin. Collection and assembly of data and Data analysis and interpretation: Sifan Zhang. Final approval of manuscript: all authors.

Corresponding author

Correspondence to Guoming Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Ethics committee of the Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, China (k20211109-03).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Z., Hu, Y., Chen, L. et al. Multiplatform tear proteomic profiling reveals novel non-invasive biomarkers for diabetic retinopathy. Eye (2024). https://doi.org/10.1038/s41433-024-02938-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41433-024-02938-0

Search

Quick links