Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Impact of Type 2 diabetes mellitus and insulin use on progression to glaucoma surgery in primary open angle glaucoma

Abstract

Purpose

To investigate outcomes of primary open-angle glaucoma (POAG) patients with and without type 2 diabetes mellitus (T2DM).

Methods

Retrospective observational study using U.S. nationwide healthcare insurance claims database. Patients ≥40 years old with at least one HbA1c within one year of POAG diagnosis were included. Diabetic factors associated with POAG progression requiring glaucoma surgery were evaluated using multivariable Cox proportional hazards regression models adjusted for demographic, diabetic and glaucoma factors. T2DM diagnosis and use of either oral hypoglycaemic agents or insulin therapy were assessed in association with POAG progression requiring glaucoma surgery.

Results

104,515 POAG patients were included, of which 70,315 (67%) had T2DM. The mean age was 68.9 years (Standard deviation 9.2) and 55% were female. Of those with T2DM, 93% were taking medication (65,468); 95% (62,412) taking oral hypoglycaemic agents, and 34% (22,028) were on insulin. In multivariable analyses, patients with T2DM had a higher hazard of requiring glaucoma surgery (Hazard ratio, HR 1.15, 95% CI 1.09–1.21, p < 0.001). Higher mean HbA1c was also a significant predictor of progression requiring glaucoma surgery (HR 1.02, 95% CI 1.01–1.03, p < 0.001). When evaluating only patients who were taking antidiabetic medication, after adjusting for confounders, insulin use was associated with a 1.20 higher hazard of requiring glaucoma surgery compared to oral hypoglycaemic agents (95% CI 1.14–1.27, p < 0.001), but when stratified by HbA1c, this effect was only significant for those with HbA1c > 7.5%.

Conclusions

Higher baseline HbA1c, particularly in patients taking insulin may be associated with higher rates of glaucoma surgery in POAG.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Progression to glaucoma surgery according to HbA1c in POAG patients.
Fig. 2: Progression to glaucoma surgery in POAG patients with T2DM Taking insulin compared to those on oral hypoglycaemic agents, stratified by HbA1c levels.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from Clinformatics Data Mart (OptumInsight) but restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly available. Data are however available from the authors upon reasonable request and with permission of Clinformatics Data Mart (OptumInsight).

References

  1. Zhao D, Cho J, Kim MH, Friedman DS, Guallar E. Diabetes, fasting glucose, and the risk of glaucoma: a meta-analysis. Ophthalmology. 2015;122:72–8.

    Article  PubMed  Google Scholar 

  2. Zhao YX, Chen XW. Diabetes and risk of glaucoma: systematic review and a Meta-analysis of prospective cohort studies. Int J Ophthalmol. 2017;10:1430–5.

    PubMed  PubMed Central  Google Scholar 

  3. Zhou M, Wang W, Huang W, Zhang X. Diabetes mellitus as a risk factor for open-angle glaucoma: a systematic review and meta-analysis. PLoS One. 2014;9:e102972.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  4. Ko F, Boland MV, Gupta P, Gadkaree SK, Vitale S, Guallar E, et al. Diabetes, triglyceride levels, and other risk factors for glaucoma in the national health and nutrition examination survey 2005–2008. Invest Ophthalmol Vis Sci. 2016;57:2152–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pasquale LR, Kang JH, Manson JE, Willett WC, Rosner BA, Hankinson SE. Prospective study of type 2 diabetes mellitus and risk of primary open-angle glaucoma in women. Ophthalmology. 2006;113:1081–6.

    Article  PubMed  Google Scholar 

  6. Law SK, Hosseini H, Saidi E, Nassiri N, Neelakanta G, Giaconi JA, et al. Long-term outcomes of primary trabeculectomy in diabetic patients with primary open angle glaucoma. Br J Ophthalmol. 2013;97:561–6.

    Article  PubMed  Google Scholar 

  7. Edmunds B, Bunce CV, Thompson JR, Salmon JF, Wormald RP. Factors associated with success in first-time trabeculectomy for patients at low risk of failure with chronic open-angle glaucoma. Ophthalmology. 2004;111:97–103.

    Article  PubMed  Google Scholar 

  8. Mitchell P, Smith W, Chey T, Healey PR. Open-angle glaucoma and diabetes: the Blue Mountains eye study, Australia. Ophthalmology. 1997;104:712–8.

    Article  CAS  PubMed  Google Scholar 

  9. Dielemans I, de Jong PT, Stolk R, Vingerling JR, Grobbee DE, Hofman A. Primary open-angle glaucoma, intraocular pressure, and diabetes mellitus in the general elderly population. The Rotterdam Study. Ophthalmology. 1996;103:1271–5.

    Article  CAS  PubMed  Google Scholar 

  10. Hennis A, Wu SY, Nemesure B, Leske MC, Barbados Eye Studies G. Hypertension, diabetes, and longitudinal changes in intraocular pressure. Ophthalmology. 2003;110:908–14.

    Article  PubMed  Google Scholar 

  11. Kanamori A, Nakamura M, Mukuno H, Maeda H, Negi A. Diabetes has an additive effect on neural apoptosis in rat retina with chronically elevated intraocular pressure. Curr Eye Res. 2004;28:47–54.

    Article  PubMed  Google Scholar 

  12. Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120:701–13.

    Article  PubMed  Google Scholar 

  13. Sommer A, Tielsch JM. Risk factors for open-angle glaucoma: the Barbados Eye Study. Arch Ophthalmol. 1996;114:235.

    Article  CAS  PubMed  Google Scholar 

  14. Tielsch JM, Katz J, Quigley HA, Javitt JC, Sommer A. Diabetes, intraocular pressure, and primary open-angle glaucoma in the Baltimore Eye Survey. Ophthalmology. 1995;102:48–53.

    Article  CAS  PubMed  Google Scholar 

  15. Akkaya S, Can E, Ozturk F. Comparison of optic nerve head topographic parameters in patients with primary open-angle glaucoma with and without diabetes mellitus. J Glaucoma. 2016;25:49–53.

    Article  PubMed  Google Scholar 

  16. Akkaya S, Can E, Ozturk F. Comparison of the corneal biomechanical properties, optic nerve head topographic parameters, and retinal nerve fiber layer thickness measurements in diabetic and non-diabetic primary open-angle glaucoma. Int Ophthalmol. 2016;36:727–36.

    Article  PubMed  Google Scholar 

  17. Ebneter A, Chidlow G, Wood JP, Casson RJ. Protection of retinal ganglion cells and the optic nerve during short-term hyperglycemia in experimental glaucoma. Arch Ophthalmol. 2011;129:1337–44.

    Article  PubMed  Google Scholar 

  18. Agostinone J, Alarcon-Martinez L, Gamlin C, Yu WQ, Wong ROL, Di, et al. Insulin signalling promotes dendrite and synapse regeneration and restores circuit function after axonal injury. Brain. 2018;141:1963–80.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Al Hussein Al Awamlh S, Wareham LK, Risner ML, Calkins DJ. Insulin Signaling as a Therapeutic Target in Glaucomatous Neurodegeneration. Int J Mol Sci. 2021;22:4672.

  20. Dada T. Is glaucoma a neurodegeneration caused by central insulin resistance: diabetes Type 4? J Curr Glaucoma Pr. 2017;11:77–9.

    Article  Google Scholar 

  21. Ito M. Insulin or bFGF and C2 ceramide increase newborn rat retinal ganglion cell survival rate. Biochem Biophys Res Commun. 2003;301:564–71.

    Article  CAS  PubMed  Google Scholar 

  22. El-Fayoumi D, Badr Eldine NM, Esmael AF, Ghalwash D, Soliman HM. Retinal nerve fiber layer and ganglion cell complex thicknesses are reduced in children with Type 1 diabetes with no evidence of vascular retinopathy. Invest Ophthalmol Vis Sci. 2016;57:5355–60.

    Article  CAS  PubMed  Google Scholar 

  23. Choi JA, Park YM, Han K, Lee J, Yun JS, Ko SH. Fasting plasma glucose level and the risk of open angle glaucoma: Nationwide population-based cohort study in Korea. PLoS One. 2020;15:e0239529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Johnson NA, Jammal AA, Berchuck SI, Medeiros FA. Effect of diabetes control on rates of structural and functional loss in patients with glaucoma. Ophthalmol Glaucoma. 2021;4:216–23.

    Article  PubMed  Google Scholar 

  25. Bonovas S, Peponis V, Filioussi K. Diabetes mellitus as a risk factor for primary open-angle glaucoma: a meta-analysis. Diabet Med. 2004;21:609–14.

    Article  CAS  PubMed  Google Scholar 

  26. Nakamura M, Kanamori A, Negi A. Diabetes mellitus as a risk factor for glaucomatous optic neuropathy. Ophthalmologica. 2005;219:1–10.

    Article  PubMed  Google Scholar 

  27. Amato R, Lazzara F, Chou TH, Romano GL, Cammalleri M, Dal Monte M, et al. Diabetes exacerbates the intraocular pressure-independent retinal ganglion cells degeneration in the DBA/2J Model of Glaucoma. Invest Ophthalmol Vis Sci. 2021;62:9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yi YH, Cho YH, Kim YJ, Lee SY, Lee JG, Kong EH, et al. Metabolic syndrome as a risk factor for high intraocular pressure: the Korea National Health and Nutrition Examination Survey 2008-2010. Diabetes Metab Syndr Obes. 2019;12:131–7.

  29. Chua J, Chee ML, Chin CWL, Tham YC, Tan N, Lim SH, et al. Inter-relationship between ageing, body mass index, diabetes, systemic blood pressure and intraocular pressure in Asians: 6-year longitudinal study. Br J Ophthalmol. 2019;103:196–202.

    Article  PubMed  Google Scholar 

  30. Yildiz P, Kebapci MN, Mutlu F, Yasar S, Gursoy H, Yildirim N. Intraocular pressure changes during oral glucose tolerance tests in diabetic and non-diabetic individuals. Exp Clin Endocrinol Diabetes. 2016;124:385–8.

    Article  CAS  PubMed  Google Scholar 

  31. Kim YH, Jung SW, Nam GE, Do Han K, Bok AR, Baek SJ, et al. High intraocular pressure is associated with cardiometabolic risk factors in South Korean men: Korean National Health and Nutrition Examination Survey, 2008-2010. Eye (Lond). 2014;28:672–9.

    Article  CAS  PubMed  Google Scholar 

  32. Luo XY, Dai W, Chee ML, Tao Y, Chua J, Tan NYQ, et al. Association of diabetes with central corneal thickness among a multiethnic Asian population. JAMA Netw Open. 2019;2:e186647.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Su DH, Wong TY, Wong WL, Saw SM, Tan DT, Shen SY, et al. Diabetes, hyperglycemia, and central corneal thickness: the Singapore Malay Eye Study. Ophthalmology. 2008;115:964–8.e1.

    Article  PubMed  Google Scholar 

  34. Luo XY, Tan NYQ, Chee ML, Shi Y, Tham YC, Wong TY, et al. Direct and indirect associations between diabetes and intraocular pressure: the singapore epidemiology of eye diseases study. Invest Ophthalmol Vis Sci. 2018;59:2205–11.

    Article  CAS  PubMed  Google Scholar 

  35. Hou H, Moghimi S, Baxter SL, Weinreb RN. Is diabetes mellitus a blessing in disguise for primary open-angle glaucoma? J Glaucoma. 2021;30:1–4.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Quigley HA. Can diabetes be good for glaucoma? Why can’t we believe our own eyes (or data)? Arch Ophthalmol. 2009;127:227–9.

    PubMed  Google Scholar 

  37. Sim YS, Kwon JW, Jee D, Choi JA, Ko SH, Park CK. Increased prelaminar tissue thickness in patients with open-angle glaucoma and type 2 diabetes. PLoS One. 2019;14:e0211641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Foxton RH, Finkelstein A, Vijay S, Dahlmann-Noor A, Khaw PT, Morgan JE, et al. VEGF-A is necessary and sufficient for retinal neuroprotection in models of experimental glaucoma. Am J Pathol. 2013;182:1379–90.

    Article  CAS  PubMed  Google Scholar 

  39. Lin HC, Stein JD, Nan B, Childers D, Newman-Casey PA, Thompson DA, et al. Association of geroprotective effects of metformin and risk of open-angle glaucoma in persons with diabetes mellitus. JAMA Ophthalmol. 2015;133:915–23.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chen PP. Is diabetes, even without retinopathy, a risk factor for glaucoma filtering surgery failure in the age of anti-fibrosis agents? Br J Ophthalmol. 2013;97:541–2.

    Article  PubMed  Google Scholar 

  41. Landers J, Martin K, Sarkies N, Bourne R, Watson P. A twenty-year follow-up study of trabeculectomy: risk factors and outcomes. Ophthalmology. 2012;119:694–702.

    Article  PubMed  Google Scholar 

  42. Hou H, Shoji T, Zangwill LM, Moghimi S, Saunders LJ, Hasenstab K, et al. Progression of primary open-angle glaucoma in diabetic and nondiabetic patients. Am J Ophthalmol. 2018;189:1–9.

  43. Welinder LG, Riis AH, Knudsen LL, Thomsen RW. Diabetes, glycemic control and risk of medical glaucoma treatment: a population-based case-control study. Clin Epidemiol. 2009;1:125–31.

  44. Cheng YJ, Kanaya AM, Araneta MRG, Saydah SH, Kahn HS, Gregg EW, et al. Prevalence of diabetes by race and ethnicity in the United States, 2011–2016. JAMA. 2019;322:2389–98.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Bonaca MP, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 2019;393:31–9.

    Article  CAS  PubMed  Google Scholar 

  46. Chung YR, Ha KH, Lee K, Kim DJ. Effects of sodium-glucose cotransporter-2 inhibitors and dipeptidyl peptidase-4 inhibitors on diabetic retinopathy and its progression: a real-world Korean study. PLoS One. 2019;14:e0224549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Montgomery MK, Turner N. Mitochondrial dysfunction and insulin resistance: an update. Endocr Connect. 2015;4:R1–R15.

    Article  PubMed  Google Scholar 

  48. Sun Q, Li J, Gao F. New insights into insulin: The anti-inflammatory effect and its clinical relevance. World J Diabetes. 2014;5:89–96.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kim JW. Insulin enhances nitric oxide production in trabecular meshwork cells via de novo pathway for tetrahydrobiopterin synthesis. Korean J Ophthalmol. 2007;21:39–44.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Faiq MA, Dada T. Diabetes Type 4: a paradigm shift in the understanding of glaucoma, the brain specific diabetes and the candidature of insulin as a therapeutic agent. Curr Mol Med. 2017;17:46–59.

    Article  CAS  PubMed  Google Scholar 

  51. Avgerinos KI, Kalaitzidis G, Malli A, Kalaitzoglou D, Myserlis PG, Lioutas VA. Intranasal insulin in Alzheimer’s dementia or mild cognitive impairment: a systematic review. J Neurol. 2018;265:1497–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Craft S, Raman R, Chow TW, Rafii MS, Sun CK, Rissman RA, et al. Safety, efficacy, and feasibility of intranasal insulin for the treatment of mild cognitive impairment and alzheimer disease dementia: a randomized clinical trial. JAMA Neurol. 2020;77:1099–109.

    Article  PubMed  Google Scholar 

  53. Del Amo EM, Rimpela AK, Heikkinen E, Kari OK, Ramsay E, Lajunen T, et al. Pharmacokinetic aspects of retinal drug delivery. Prog Retin Eye Res. 2017;57:134–85.

  54. Ahmed IIK, De Francesco T, Rhee D, McCabe C, Flowers B, Gazzard G, et al. Long-term outcomes from the HORIZON randomized trial for a Schlemm’s canal microstent in combination cataract and glaucoma surgery. Ophthalmology. 2022;129:742–51.

    Article  PubMed  Google Scholar 

  55. Husain R, Liang S, Foster PJ, Gazzard G, Bunce C, Chew PT, et al. Cataract surgery after trabeculectomy: the effect on trabeculectomy function. Arch Ophthalmol. 2012;130:165–70.

    Article  PubMed  Google Scholar 

Download references

Funding

Departmental support from Research to Prevent Blindness and National Eye Institute P30-026877 (SYW); National Eye Institute K23EY03263501 (SYW).

Author information

Authors and Affiliations

Authors

Contributions

MTS was responsible for study design, data collection, data analysis and writing the report. SP contributed to study conception, study design, interpretation of results and provided feedback on the manuscript. JLG contributed to study conception, study design, interpretation of results and provided feedback on the manuscript. SYW was responsible for study conception, design and interpretation of results, and contributed to writing the report.

Corresponding author

Correspondence to Sophia Y. Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M.T., Pershing, S., Goldberg, J.L. et al. Impact of Type 2 diabetes mellitus and insulin use on progression to glaucoma surgery in primary open angle glaucoma. Eye 38, 558–564 (2024). https://doi.org/10.1038/s41433-023-02734-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41433-023-02734-2

Search

Quick links