Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tyrosine Kinase Inhibitors and their role in treating neovascular age-related macular degeneration and diabetic macular oedema

Abstract

The advent of intravitreal anti-VEGF injections has revolutionised the treatment of both neovascular age-related macular degeneration (nAMD or wet AMD) and diabetic macular oedema (DMO). Despite their efficacy, anti-VEGF injections precipitate significant treatment burden for patients, caregivers and healthcare systems due to the high frequency of injections required to sustain treatment benefit. Therefore, there remains an unmet need for lower-burden therapies. Tyrosine kinase inhibitors (TKI) are a novel class of drugs that may have considerable potential in addressing this issue. This review will summarise and discuss the results of various pilot studies and clinical trials exploring the role of TKIs in treatment of nAMD and DMO, highlighting promising candidates and possible challenges in developments.

摘要

玻璃体内注射抗VEGF药物的出现改变了新生血管性年龄相关性黄斑变性 (nAMD或湿性AMD) 和糖尿病性黄斑水肿 (DMO) 的治疗。尽管抗VEGF治疗有效, 但由于维持治疗效果需要高频次注射, 给患者、护理人员和医保系统带来了巨大的治疗负担。因此, 对低负担治疗的需求仍未得到满足。酪氨酸激酶抑制剂 (TKI)为一种新型药物, 在解决这一问题方面可能具有很大的潜力。本综述将总结和讨论TKI在nAMD和DMO治疗中作用的各种探索性研究和临床试验的结果, 强调有前景的备选药物和开发中可能面临的挑战。

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of tyrosine kinase inhibitors (TKIs) and the receptors they target.

Similar content being viewed by others

References

  1. Khan M, Aziz AA, Shafi NA, Abbas T, Khanani am. targeting angiopoietin in retinal vascular diseases: a literature review and summary of clinical trials involving faricimab. Cells NLM (Medlin). 2020;9:1869.

    Article  CAS  Google Scholar 

  2. Lorenzo-Soler L, Praphanwittaya P, Olafsdottir OB, Kristinsdottir IM, Asgrimsdottir GM, Loftsson T, et al. Topical noninvasive retinal drug delivery of a tyrosine kinase inhibitor: 3% cediranib maleate cyclodextrin nanoparticle eye drops in the rabbit eye. Acta Ophthalmol. 2022;100:788–96.

    Article  CAS  PubMed  Google Scholar 

  3. Mirando AC, Shen J, Silva RLE, Chu Z, Sass NC, Lorenc VE, et al. A collagen IV-derived peptide disrupts α5β1 integrin and potentiates Ang2/Tie2 signaling. JCI Insight. 2019;4:e122043.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Witmer AN, Vrensen GFJM, van Noorden CJF, Schlingemann RO. Vascular endothelial growth factors and angiogenesis in eye disease. Prog Retinal Eye Res. 2003;22:1–29.

    Article  CAS  Google Scholar 

  5. Garcia J, Hurwitz HI, Sandler AB, Miles D, Coleman RL, Deurloo R, et al. Bevacizumab (Avastin®) in cancer treatment: A review of 15 years of clinical experience and future outlook. Vol. 86, Cancer Treatment Reviews. W.B. Saunders Ltd; 2020.

  6. Paling T, Hewitt C, Hay N, Beggs L Fast Track Appraisal: Brolucizumab for treating wet age-related macular degeneration [ID1254]. 2020.

  7. National Institute for Health and Care Excellence. Ranibizumab and pegaptanib for the treatment of age-related macular degeneration. TA155. London: National Institute for Health and Care Excellence. 2012.

  8. Joint Formulary Committee. Aflibercept for treating diabetic macular oedema. British National Formulary. 2015.

  9. O’Brien S, Stevenson M, Renehan A, Nwulu U Fast Track Appraisal: Faricimab for treating diabetic macular oedema and wet age-related macular degeneration [ID3898]. 2022.

  10. Apte RS. Tyrosine kinase inhibitors in age-related macular degeneration. JAMA Ophthalmol Am Med Assoc. 2017;135:767–8.

    Article  Google Scholar 

  11. Ségaliny AI, Tellez-Gabriel M, Heymann MF, Heymann D. Receptor tyrosine kinases: Characterisation, mechanism of action and therapeutic interests for bone cancers. J Bone Oncol. 2015;4:1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Saharinen P, Jeltsch M, Santoyo MM, Leppänen VM, Alitalo K. The TIE Receptor Family. Receptor Tyrosine Kinases: Family and Subfamilies. 2015;743. Available from: /pmc/articles/PMC7123982/

  13. Thomson RJ, Moshirfar M, Ronquillo Y. Tyrosine Kinase Inhibitors. StatPearls. 2022. https://www.ncbi.nlm.nih.gov/books/NBK563322/

  14. Esteban-Villarrubia J, Soto-Castillo JJ, Pozas J, Román-Gil MS, Orejana-Martín I, Torres-Jiménez J, et al. Tyrosine kinase receptors in oncology. Int J Mol Sci. 2020;21:1–48. https://pubmed.ncbi.nlm.nih.gov/33198314/

    Article  Google Scholar 

  15. Tsujinaka H, Fu J, Shen J, Yu Y, Hafiz Z, Kays J, et al. Sustained treatment of retinal vascular diseases with self-aggregating sunitinib microparticles. Nat Commun. 2020;11:694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liang C, Yuan X, Shen Z, Wang Y, Ding L. Vorolanib, a novel tyrosine receptor kinase receptor inhibitor with potent preclinical anti-angiogenic and anti-tumor activity. Mol Ther Oncolytics. 2022;24:577–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee DH, Park K, Kim JH, Lee JS, Shin SW, Kang JH, et al. Randomized phase III trial of gefitinib versus docetaxel in non-small cell lung cancer patients who have previously received platinum-based chemotherapy. Clin Cancer Res. 2010;16:1307–14. https://aacrjournals.org/clincancerres/article/16/4/1307/75634/Randomized-Phase-III-Trial-of-Gefitinib-versus

    Article  CAS  PubMed  Google Scholar 

  18. Huang L, Jiang S, Shi Y. Tyrosine kinase inhibitors for solid tumors in the past 20 years (2001–2020). J Hematol Oncol. 2020;13:143.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Murthy RK, Loi S, Okines A, Paplomata E, Hamilton E, Hurvitz SA, et al. Tucatinib, trastuzumab, and capecitabine for HER2-positive metastatic breast cancer. N. Engl J Med. 2020;382:597–609. https://pubmed.ncbi.nlm.nih.gov/31825569/

    Article  CAS  PubMed  Google Scholar 

  20. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356:115–24. www.nejm.org

    Article  CAS  PubMed  Google Scholar 

  21. Richeldi L, du Bois RM, Raghu G, Azuma A, Brown KK, Costabel U, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N. Engl J Med. 2014;370:2071–82. https://www.nejm.org/doi/full/10.1056/nejmoa1402584

    Article  PubMed  Google Scholar 

  22. Aykul S, Martinez-Hackert E. Determination of half-maximal inhibitory concentration using biosensor-based protein interaction analysis. Anal Biochem. 2016;508:97–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Diago T, Pulido JS, Molina JR, Collet LC, Link TP, Ryan EH. Ranibizumab combined with low-dose sorafenib for exudative age-related macular degeneration. Mayo Clin Proc. 2008;83:231–4. http://www.mayoclinicproceedings.org/article/S0025619611608471/fulltext

    Article  PubMed  Google Scholar 

  24. McLaughlin MM, Paglione MG, Slakter J, Tolentino M, Ye L, Xu CF, et al. Initial exploration of oral pazopanib in healthy participants and patients with age-related macular degeneration. JAMA Ophthalmol. 2013;131:1595–601.

    Article  PubMed  Google Scholar 

  25. Csaky KG, Dugel PU, Pierce AJ, Fries MA, Kelly DS, Danis RP, et al. Clinical evaluation of pazopanib eye drops versus ranibizumab intravitreal injections in subjects with neovascular age-related macular degeneration. Ophthalmology 2015;122:579–88.

    Article  PubMed  Google Scholar 

  26. PanOptica Inc.A Randomized, Double Masked, Uncontrolled, Multicenter Phase I/II Study to Evaluate Safety and Tolerability of PAN-90806 Eye Drops, Suspension in Treatment-Naïve Participants With Neovascular Age-Related Macular Degeneration (AMD). ClinicalTrials.gov NCT03479372. 2018.

  27. PanOptica Inc. PanOptica: Anti-VEGF Eye Drop Shows Promise in Treatment of Wet AMD. Eyewire. 2019. https://eyewire.news/articles/panoptica-anti-vegf-eye-drop-shows-promise-in-treatment-of-wet-amd/?c4src=article:infinite-scroll

  28. PanOptica Inc. PAN-90806: Once-daily topical anti-VEGF eye drop for wet AMD and other neovascular eye disease. Ophthalmology Innovation Source (OIS) Summit. 2019 [cited 2023 Jan 14]. Available from: https://www.panopticapharma.com/wp-content/uploads/2019/10/PAN-90806-Data-at-OIS@AAO.pdf

  29. Joussen AM, Wolf S, Kaiser PK, Boyer D, Schmelter T, Sandbrink R, et al. The Developing Regorafenib Eye drops for neovascular Age‐related Macular degeneration (DREAM) study: an open‐label phase II trial. Br J Clin Pharm. 2019;85:347–55.

    Article  CAS  Google Scholar 

  30. Papaetis GS, Syrigos KN. Sunitinib: a multitargeted receptor tyrosine kinase inhibitor in the era of molecular cancer therapies. BioDrugs. 2009;23:377–89. https://pubmed.ncbi.nlm.nih.gov/19894779/

    Article  CAS  PubMed  Google Scholar 

  31. Graybug Vision Inc. A Phase 2b Multicenter Dose-Ranging Study Evaluating the Safety and Efficacy of Sunitinib Malate Depot Formulation (GB-102) Compared to Aflibercept in Subjects With Neovascular (Wet) Age-related Macular Degeneration (ALTISSIMO Study). ClinicalTrials.gov NCT03953079. 2022;

  32. Graybug Vision Inc. ALTISSIMO full-data analysis 12-month treatment phase. 2021.

  33. Crute BE, Seefeld K, Gamble J, Kemp BE, Witters LA. Functional domains of the α1 catalytic subunit of the AMP-activated protein kinase. J Biol Chem. 1998;273:35347–54. http://www.jbc.org/article/S0021925818372193/fulltext

    Article  CAS  PubMed  Google Scholar 

  34. Khanani AM, Regillo CD, Wykoff CC, Moshfeghi A, Weng CY, Bakri SJ, et al. Sustained-release Tyrosine Kinase Inhibitors for the Treatment of nAMD. Retin Physician. 2022;19:23–25.

    Google Scholar 

  35. Cohen MN, O’Shaughnessy D, Fisher K, Cerami J, Awh CC, Salazar DE, et al. APEX: a phase II randomised clinical trial evaluating the safety and preliminary efficacy of oral X-82 to treat exudative age-related macular degeneration. Br J Ophthalmol. 2021;105:716–22. https://bjo.bmj.com/content/105/5/716

    Article  PubMed  Google Scholar 

  36. Saim S, Sparks M, Paggiarino D, Karzoun B. Bioerodible Ocular Drug Delivery Insert And Therapeutic Method. United States: The U.S. Patent and Trademark Office; US 2022/0168142 A1, 2022.

  37. Jackson TL, Boyer D, Brown DM, Chaudhry N, Elman M, Liang C, et al. Oral tyrosine kinase inhibitor for neovascular age-related macular degeneration: A phase 1 dose-escalation study. JAMA Ophthalmol. 2017;135:761–7.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhao Y, Adjei AA. Targeting angiogenesis in cancer therapy: moving beyond vascular endothelial growth factor. Oncologist. 2015;20:660–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gross-Goupil M, Françlois L, Quivy A, Ravaud A. Axitinib: A review of its safety and efficacy in the treatment of adults with advanced renal cell carcinoma. Clin Med Insights Oncol. 2013;7:CMO.S10594.

    Article  Google Scholar 

  40. UNITED STATES SECURITIES AND EXCHANGE COMMISSION. Form 8-K, Current Report for EyePoint Pharmaceuticals, Inc. Washington, D.C.; 2023.

  41. Andrew A Moshfeghi, Ocular Therapeutix Inc. Intravitreal Hydrogel-Based Axitinib Implant (OTX-TKI) for the Treatment of Neovascular AMD: A Phase 1 Trial Update. Angiogenesis, Exudation and Degeneration Symposium. 2021.

  42. Chiang B, Jung JH, Prausnitz MR. The suprachoroidal space as a route of administration to the posterior segment of the eye. Adv Drug Deliv Rev. 2018;126:58–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Moisseiev E, Loewenstein A, Yiu G. The suprachoroidal space: from potential space to a space with potential. Clin Ophthalmol 2016;10:173–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rai UDJP, Young SA, Thrimawithana TR, Abdelkader H, Alani AWG, Pierscionek B, et al. The suprachoroidal pathway: a new drug delivery route to the back of the eye. Drug Discov Today. 2015;20:491–5.

    Article  CAS  PubMed  Google Scholar 

  45. Lampen SIR, Khurana RN, Noronha G, Brown DM, Wykoff CC. Suprachoroidal Space alterations following delivery of triamcinolone acetonide: post-hoc analysis of the phase ½ HULK study of patients with diabetic macular edema. Ophthalmic Surg Lasers Imaging Retin. 2018;49:692–7.

    Article  Google Scholar 

  46. Muya L, Kansara V, Ciulla T. Pharmacokinetics and Ocular Tolerability of Suprachoroidal CLS-AX (axitinib injectable suspension) in rabbits. Invest Ophthalmol Vis Sci. 2020;61:4925.

    Google Scholar 

  47. Emi K, Pederson JE, Toris CB. Hydrostatic pressure of the suprachoroidal space. Invest Ophthalmol Vis Sci. 1989;30:233–8. https://pubmed.ncbi.nlm.nih.gov/2914753/

    CAS  PubMed  Google Scholar 

  48. Thakur A, Scheinman RI, Rao VR, Kompella UB. Pazopanib, a multitargeted tyrosine kinase inhibitor, reduces diabetic retinal vascular leukostasis and leakage. Microvasc Res 2011;82:346–50. https://doi.org/10.1016/j.mvr.2011.09.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Semeraro F, Cancarini A, dell’Omo R, Rezzola S, Romano MR, Costagliola C. Diabetic retinopathy: vascular and inflammatory disease. J Diabetes Res. 2015;2015:1–16.

    Article  Google Scholar 

  50. Brown DM, Wykoff CC, Boyer D, Heier JS, Clark WL, Emanuelli A, et al. Evaluation of intravitreal aflibercept for the treatment of severe nonproliferative diabetic retinopathy. JAMA Ophthalmol. 2021;139:946.

    Article  PubMed  Google Scholar 

  51. Market Scope. US Retina Quarterly Update Q2 - 2022.

  52. Downs P 2022 Retinal Pharmaceuticals Market Report: Global Analysis for 2021 to 2027, August, 2022. 2022.

  53. Jarrett PK, et al. ARVO Annual Meeting. ARVO. 2018.

  54. Kaiser PK, Et al. Eyecelerator. American Academy of Ophthalmology Meeting, Chicago, US. Retina Showcase. September 29, 2022.

Download references

Acknowledgements

The research was supported by the NIHR Biomedical Research Centre and the Clinical Research Facility at Moorfields Eye Hospital NHS Foundation trust and UCL Institute of Technology.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, T.E. and S.S.; methodology, S.C., T.E., and S.S.; data curation, S.C. and E.Y.T.; writing—original draught preparation, S.C., E.Y.T., and S.S.; writing—review and editing, T.E., and S.S.; supervision, S.S.; funding acquisition, none. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Sobha Sivaprasad.

Ethics declarations

Competing interests

S.S. has received funding/fees from Bayer, Novartis, Abbvie, Roche, Boehringer Ingelheim, Optos, EyeBiotech, Biogen, and Apellis. T.E. is an employee of Boehringer Ingelheim Ltd, Germany. S.S. and S.C. are members of the Eye editorial board.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra, S., Tan, E.Y., Empeslidis, T. et al. Tyrosine Kinase Inhibitors and their role in treating neovascular age-related macular degeneration and diabetic macular oedema. Eye 37, 3725–3733 (2023). https://doi.org/10.1038/s41433-023-02610-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41433-023-02610-z

Search

Quick links