Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Corneal nerve loss and increased Langerhans cells are associated with disease severity in patients with rheumatoid arthritis

Abstract

Background/Objectives

Rheumatoid arthritis (RA) is a multisystem autoimmune disorder characterized by articular and extra-articular manifestations. Neuropathy is a poorly studied manifestation of RA. The aim of this study was to utilize the rapid non-invasive ophthalmic imaging technique of corneal confocal microscopy to identify whether there is evidence of small nerve fibre injury and immune cell activation in patients with RA.

Subjects/Methods

Fifty consecutive patients with RA and 35 healthy control participants were enrolled in this single-centre, cross-sectional study conducted at a university hospital. Disease activity was assessed with the 28-Joint Disease Activity Score and erythrocyte sedimentation rate (DAS28-ESR). Central corneal sensitivity was measured with a Cochet-Bonnet contact corneal esthesiometer. A laser scanning in vivo corneal confocal microscope was used to quantify corneal nerve fibre density (CNFD), nerve branch density (CNBD), nerve fibre length (CNFL), and Langerhans cell (LC) density.

Results

Corneal sensitivity (P = 0.01), CNFD (P = 0.02), CNBD (P < 0.001), and CNFL (P < 0.001) were lower, and mature (P = 0.001) and immature LC densities (P = 0.011) were higher in patients with RA compared to control subjects. CNFD (P = 0.016) and CNFL (P = 0.028) were significantly lower in patients with moderate to high (DAS28-ESR > 3.2) compared to mild (DAS28-ESR ≤ 3.2) disease activity. Furthermore, the DAS28-ESR score correlated with CNFD (r = −0.425; P = 0.002), CNBD (ρ = −0.362; P = 0.010), CNFL (r = −0.464; P = 0.001), total LC density (ρ = 0.362; P = 0.010) and immature LC density (ρ = 0.343; P = 0.015).

Conclusions

This study demonstrates reduced corneal sensitivity, corneal nerve fibre loss and increased LCs which were associated with the severity of disease activity in patients with RA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Representative corneal confocal microscopy images.
Fig. 2: Corneal nerve fibre parameters and Langerhans cell (LC) density in patients with rheumatoid arthritis (RA) and healthy control participants, showing significantly lower corneal nerve fibre density (CNFD), corneal nerve branch density (CNBD) and corneal nerve fibre length (CNFL), and higher LC density in patients with RA.

Similar content being viewed by others

Data availability

All anonymized data that support the findings of this study are available to any qualified researcher upon reasonable request to the corresponding author (ORCID: 0000-0002-0509-5649).

References

  1. Turesson C, O’Fallon WM, Crowson CS, Gabriel SE, Matteson EL. Occurrence of extraarticular disease manifestations is associated with excess mortality in a community based cohort of patients with rheumatoid arthritis. J Rheumatol. 2002;29:62–67.

    PubMed  Google Scholar 

  2. Lanzillo B, Pappone N, Crisci C, di Girolamo C, Massini R, Caruso G. Subclinical peripheral nerve involvement in patients with rheumatoid arthritis. Arthritis Rheum. 1998;41:1196–202.

    Article  CAS  PubMed  Google Scholar 

  3. DeQuattro K, Imboden JB. Neurologic manifestations of rheumatoid arthritis. Rheum Dis Clin N Am. 2017;43:561–71.

    Article  Google Scholar 

  4. Agarwal V, Singh R, Wiclaf, Chauhan S, Tahlan A, Ahuja CK, et al. A clinical, electrophysiological, and pathological study of neuropathy in rheumatoid arthritis. Clin Rheumatol. 2008;27:841–4.

    Article  PubMed  Google Scholar 

  5. Kaeley N, Ahmad S, Pathania M, Kakkar R. Prevalence and patterns of peripheral neuropathy in patients of rheumatoid arthritis. J Fam Med Prim Care. 2019;8:22–26.

    Article  Google Scholar 

  6. Rolke R, Baron R, Maier C, Tölle TR, Treede -DR, Beyer A, et al. Quantitative sensory testing in the German Research Network on Neuropathic. Pain. 2006;123:231–43.

    Article  CAS  PubMed  Google Scholar 

  7. Bayrak AO, Durmus D, Durmaz Y, Demir I, Canturk F, Onar MK. Electrophysiological assessment of polyneuropathic involvement in rheumatoid arthritis: relationships among demographic, clinical and laboratory findings. Neurol Res. 2010;32:711–4.

    Article  PubMed  Google Scholar 

  8. Sim MK, Kim DY, Yoon J, Park DH, Kim YG. Assessment of peripheral neuropathy in patients with rheumatoid arthritis who complain of neurologic symptoms. Ann Rehabil Med. 2014;38:249–55.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gemignani F, Giovanelli M, Vitetta F, Santilli D, Bellanova MF, Brindani F, et al. Non-length dependent small fibre neuropathy. a prospective case series. J Peripher Nerv Syst. 2010;15:57–62.

    Article  PubMed  Google Scholar 

  10. Birnbaum J. Small fibre neuropathy presenting during the antecedent period of undifferentiated arthritis prior to rheumatoid arthritis. Neurol Clin Pract. 2017;7:e47–e50.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Syngle V, Syngle A, Garg N, Krishan P, Verma I. Predictors of autonomic neuropathy in rheumatoid arthritis. Auton Neurosci. 2016;201:54–9.

    Article  CAS  PubMed  Google Scholar 

  12. Efron N, Edwards K, Roper N, Pritchard N, Sampson GP, Shahidi AM, et al. Repeatability of measuring corneal subbasal nerve fibre length in individuals with type 2 diabetes. Eye Contact Lens. 2010;36:245–8.

    Article  PubMed  Google Scholar 

  13. Pacaud D, Romanchuk KG, Tavakoli M, Gougeon C, Virtanen H, Ferdousi M, et al. The reliability and reproducibility of corneal confocal microscopy in children. Invest Ophthalmol Vis Sci. 2015;56:5636–40.

    Article  PubMed  Google Scholar 

  14. Wang EF, Misra SL, Patel DV. In vivo confocal microscopy of the human cornea in the assessment of peripheral neuropathy and systemic diseases. Biomed Res Int. 2015;2015:951081.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Malik RA, Kallinikos P, Abbott CA, van Schie CH, Morgan P, Efron N, et al. Corneal confocal microscopy: a non-invasive surrogate of nerve fibre damage and repair in diabetic patients. Diabetologia. 2003;46:683–8.

    Article  CAS  PubMed  Google Scholar 

  16. Messmer EM, Schmid-Tannwald C, Zapp D, Kampik A. In vivo confocal microscopy of corneal small fiber damage in diabetes mellitus. Graefes Arch Clin Exp Ophthalmol. 2010;248:1307–12.

    Article  PubMed  Google Scholar 

  17. Hertz P, Bril V, Orszag A, Ahmed A, Ng E, Nwe P, et al. Reproducibility of in vivo corneal confocal microscopy as a novel screening test for early diabetic sensorimotor polyneuropathy. Diabet Med. 2011;28:1253–60.

    Article  CAS  PubMed  Google Scholar 

  18. Misra SL, Craig JP, Patel DV, McGhee CN, Pradhan M, Ellyett K, et al. In vivo confocal microscopy of corneal nerves: an ocular biomarker for peripheral and cardiac autonomic neuropathy in type 1 diabetes mellitus. Invest Ophthalmol Vis Sci. 2015;56:5060–5.

    Article  PubMed  Google Scholar 

  19. Evdokimov D, Frank J, Klitsch A, Unterecker S, Warrings B, Serra J, et al. Reduction of skin innervation is associated with a severe fibromyalgia phenotype. Ann Neurol. 2019;86:504–16.

    Article  CAS  PubMed  Google Scholar 

  20. Tavakoli M, Marshall A, Pitceathly R, Fadavi H, Gow D, Roberts ME, et al. Corneal confocal microscopy: a novel means to detect nerve fibre damage in idiopathic small fibre neuropathy. Exp Neurol. 2010;223:245–50.

    Article  PubMed  Google Scholar 

  21. Bitirgen G, Turkmen K, Malik RA, Ozkagnici A, Zengin N. Corneal confocal microscopy detects corneal nerve damage and increased dendritic cells in Fabry disease. Sci Rep. 2018;8:12244.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chiang JCB, Goldstein D, Park SB, Krishnan AV, Markoulli M. Corneal nerve changes following treatment with neurotoxic anticancer drugs. Ocul Surf. 2021;21:221–37.

    Article  PubMed  Google Scholar 

  23. Stettner M, Hinrichs L, Guthoff R, Bairov S, Petropoulos IN, Warnke C, et al. Corneal confocal microscopy in chronic inflammatory demyelinating polyneuropathy. Ann Clin Transl Neurol. 2015;3:88–100.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bitirgen G, Akpinar Z, Malik RA, Ozkagnici A. Use of corneal confocal microscopy to detect corneal nerve loss and increased dendritic cells in patients with multiple sclerosis. JAMA Ophthalmol. 2017;135:777–82.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bitirgen G, Tinkir Kayitmazbatir E, Satirtav G, Malik RA, Ozkagnici A. In vivo confocal microscopic evaluation of corneal nerve fibres and dendritic cells in patients with Behçet’s disease. Front Neurol. 2018;9:204.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bitirgen G, Kucuk A, Ergun MC, Baloglu R, Gharib MH, Al Emadi S, et al. Subclinical corneal nerve fibre damage and immune cell activation in systemic lupus erythematosus: a corneal confocal microscopy study. Transl Vis Sci Technol. 2021;10:10.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO 3rd, et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010;62:2569–81.

    Article  PubMed  Google Scholar 

  28. Prevoo ML, van ‘t Hof MA, Kuper HH, van Leeuwen MA, van de Putte LB, van Riel PL. Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum. 1995;38:44–8.

    Article  CAS  PubMed  Google Scholar 

  29. van Gestel AM, Haagsma CJ, van Riel PL. Validation of rheumatoid arthritis improvement criteria that include simplified joint counts. Arthritis Rheum. 1998;41:1845–50.

    Article  PubMed  Google Scholar 

  30. Kalteniece A, Ferdousi M, Adam S, Schofield J, Azmi S, Petropoulos I, et al. Corneal confocal microscopy is a rapid reproducible ophthalmic technique for quantifying corneal nerve abnormalities. PLoS ONE. 2017;12:e0183040.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dabbah MA, Graham J, Petropoulos IN, Tavakoli M, Malik RA. Automatic analysis of diabetic peripheral neuropathy using multi-scale quantitative morphology of nerve fibres in corneal confocal microscopy imaging. Med Image Anal. 2011;15:738–47.

    Article  CAS  PubMed  Google Scholar 

  32. Khan A, Li Y, Ponirakis G, Akhtar N, Gad H, George P, et al. Corneal immune cells are increased in patients with multiple sclerosis. Transl Vis Sci Technol. 2021;10:19.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Villani E, Galimberti D, Viola F, Mapelli C, Del Papa N, Ratiglia R. Corneal involvement in rheumatoid arthritis: an in vivo confocal study. Invest Ophthalmol Vis Sci. 2008;49:560–4.

    Article  PubMed  Google Scholar 

  34. Marsovszky L, Resch MD, Németh J, Toldi G, Medgyesi E, Kovács L, et al. In vivo confocal microscopic evaluation of corneal Langerhans cell density, and distribution and evaluation of dry eye in rheumatoid arthritis. Innate Immun. 2013;19:348–54.

    Article  PubMed  Google Scholar 

  35. Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15:155–63.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pouget J. Neuropathies des vascularites [Vascular neuropathies]. Rev Prat. 2000;50:749–52.

    CAS  PubMed  Google Scholar 

  37. Salih AM, Nixon NB, Gagan RM, Heath P, Hawkins CP, Dawes PT, et al. Anti-ganglioside antibodies in patients with rheumatoid arthritis complicated by peripheral neuropathy. Br J Rheumatol. 1996;35:725–31.

    Article  CAS  PubMed  Google Scholar 

  38. Conn DL, McDuffie FC, Dyck PJ. Immunopathologic study of sural nerves in rheumatoid arthritis. Arthritis Rheum. 1972;15:135–43.

    Article  CAS  PubMed  Google Scholar 

  39. Puéchal X, Said G, Hilliquin P, Coste J, Job-Deslandre C, Lacroix C, et al. Peripheral neuropathy with necrotizing vasculitis in rheumatoid arthritis. A clinicopathologic and prognostic study of thirty-two patients. Arthritis Rheum. 1995;38:1618–29.

    Article  PubMed  Google Scholar 

  40. Chen X, Graham J, Dabbah MA, Petropoulos IN, Ponirakis G, Asghar O, et al. Small nerve fibre quantification in the diagnosis of diabetic sensorimotor polyneuropathy: comparing corneal confocal microscopy with intraepidermal nerve fibre density. Diabetes Care. 2015;38:1138–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rousseau A, Cauquil C, Dupas B, Labbé A, Baudouin C, Barreau E, et al. Potential role of in vivo confocal microscopy for imaging corneal nerves in transthyretin familial amyloid polyneuropathy. JAMA Ophthalmol. 2016;134:983–9.

    Article  PubMed  Google Scholar 

  42. Xu J, Chen P, Yu C, Liu Y, Hu S, Di G. In vivo confocal microscopic evaluation of corneal dendritic cell density and subbasal nerve parameters in dry eye patients: a systematic review and meta-analysis. Front Med. 2021;8:578233.

    Article  Google Scholar 

  43. Tepelus TC, Chiu GB, Huang J, Huang P, Sadda SR, Irvine J, et al. Correlation between corneal innervation and inflammation evaluated with confocal microscopy and symptomatology in patients with dry eye syndromes: a preliminary study. Graefes Arch Clin Exp Ophthalmol. 2017;255:1771–8.

    Article  PubMed  Google Scholar 

  44. Birnbaum J, Lalji A, Saed A, Baer AN. Biopsy-proven small-fibre neuropathy in primary Sjögren’s syndrome: Neuropathic pain characteristics, autoantibody findings, and histopathologic features. Arthritis Care Res. 2019;71:936–48.

    Article  CAS  Google Scholar 

  45. Guerrero-Moreno A, Baudouin C, Melik Parsadaniantz S, Réaux-Le Goazigo A. Morphological and functional changes of corneal nerves and their contribution to peripheral and central sensory abnormalities. Front Cell Neurosci. 2020;14:610342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li F, Zhang Q, Ying X, He J, Jin Y, Xu H, et al. Corneal nerve structure in patients with primary Sjögren’s syndrome in China. BMC Ophthalmol. 2021;21:211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bron AJ, de Paiva CS, Chauhan SK, Bonini S, Gabison EE, Jain S, et al. TFOS DEWS II pathophysiology report. Ocul Surf. 2017;15:438–510.

    Article  PubMed  Google Scholar 

  48. Dehghani C, Frost S, Jayasena R, Fowler C, Masters CL, Kanagasingam Y, et al. Morphometric changes to corneal dendritic cells in individuals with mild cognitive impairment. Front Neurosci. 2020;14:556137.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chinnery HR, Zhang XY, Wu CY, Downie LE. Corneal immune cell morphometry as an indicator of local and systemic pathology: a review. Clin Exp Ophthalmol. 2021;49:729–40.

    Article  PubMed  Google Scholar 

  50. Page G, Lebecque S, Miossec P. Anatomic localization of immature and mature dendritic cells in an ectopic lymphoid organ: correlation with selective chemokine expression in rheumatoid synovium. J Immunol. 2002;168:5333–41.

    Article  CAS  PubMed  Google Scholar 

  51. Canavan M, Marzaioli V, Bhargava V, Nagpal S, Gallagher P, Hurson C, et al. Functionally mature CD1c+ dendritic cells preferentially accumulate in the inflammatory arthritis synovium. Front Immunol. 2021;12:745226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Villani E, Galimberti D, Del Papa N, Nucci P, Ratiglia R. Inflammation in dry eye associated with rheumatoid arthritis: cytokine and in vivo confocal microscopy study. Innate Immun. 2013;19:420–7.

    Article  PubMed  Google Scholar 

  53. Leppin K, Behrendt AK, Reichard M, Stachs O, Guthoff RF, Baltrusch S, et al. Diabetes mellitus leads to accumulation of dendritic cells and nerve fibre damage of the subbasal nerve plexus in the cornea. Invest Ophthalmol Vis Sci. 2014;55:3603–15.

    Article  PubMed  Google Scholar 

  54. Yamaguchi T, Hamrah P, Shimazaki J. Bilateral alterations in corneal nerves, dendritic cells, and tear cytokine levels in ocular surface disease. Cornea. 2016;35 Suppl 1:S65–S70.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Barcelos F, Hipólito-Fernandes D, Martins C, Ângelo-Dias M, Cardigos J, Monteiro R, et al. Corneal sub-basal nerve plexus assessment and its association with phenotypic features and lymphocyte subsets in Sjögren’s Syndrome. Acta Ophthalmol. 2021;99:e1315–e1325.

    Article  CAS  PubMed  Google Scholar 

  56. Cimmino MA, Salvarani C, Macchioni P, Montecucco C, Fossaluzza V, Mascia MT, et al. Extra-articular manifestations in 587 Italian patients with rheumatoid arthritis. Rheumatol Int. 2000;19:213–7.

    Article  CAS  PubMed  Google Scholar 

  57. Caspi D, Elkayam O, Eisinger M, Vardinon N, Yaron M, Burke M. Clinical significance of low titer anti-nuclear antibodies in early rheumatoid arthritis: implications on the presentation and long-term course of the disease. Rheumatol Int. 2001;20:43–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding

This work was supported by The Scientific Research Coordination Center of Necmettin Erbakan University (Project ID: 201218001). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

GB, AK, and RAM contributed to the conception and design of the study; GB, AK, MCE, GS, and RAM contributed to acquisition and analysis of data; GB, MCE and GS drafted the text and prepared the figures; AK and RAM reviewed the draft, provided suggestions and improvements.

Corresponding author

Correspondence to Gulfidan Bitirgen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bitirgen, G., Kucuk, A., Ergun, M.C. et al. Corneal nerve loss and increased Langerhans cells are associated with disease severity in patients with rheumatoid arthritis. Eye 37, 2950–2955 (2023). https://doi.org/10.1038/s41433-023-02447-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41433-023-02447-6

Search

Quick links