Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Uveal vascular bed in health and disease: lesions produced by occlusion of the uveal vascular bed and acute uveal ischaemic lesions seen clinically. Paper 2 of 2

Abstract

From studies on postmortem anatomical descriptions of the uveal vascular bed, it was generally concluded that occlusion of PCA or its branches should not produce an ischemic lesion. However, in vivo studies have recorded that the PCAs and their branches, right down to the terminal choroidal arterioles, and the choriocapillaris, have a segmental distribution in the choroid, and that PCAs and choroidal arteries function as end-arteries. This explains the basis of the occurrence of isolated inflammatory, ischemic, metastatic, and degenerative choroidal lesions, which are usually localized. Thus, in vivo studies have completely revolutionized our concept of the uveal vascular bed in disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fluorescein fundus angiogram of an eye with central retinal artery occlusion.
Fig. 2
Fig. 3
Fig. 4
Fig. 5: Fluorescein fundus angiograms of the macular region and the area temporal to it after lateral PCA occlusion 2 days after the occlusion in rhesus monkey.
Fig. 6: Diagram shows route of retrograde flow of blood via the vortex vein into the part of choroid supplied by an occluded PCA (large arrow).
Fig. 7: Schematic representation of blood supply of the optic nerve.
Fig. 8
Fig. 9
Fig. 10: Photomicrograph of the optic nerve head and retrolaminar optic nerve of right eye of a patient with 4-week-old arteritic AION, shows a well-defined area of infarction.
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15: Fluorescein fundus angiogram of a normal human eye, showing the sites of entry of the SPCAs and their course in the choroid.
Fig. 16
Fig. 17
Fig. 18: Diagrammatic representation of watershed zones between the four various vortex veins in rhesus monkeys.
Fig. 19
Fig. 20: Two illustrations demonstrating effect of reducing water pressure in eight garden sprinklers watering a lawn.
Fig. 21: Reticular pigmentary degeneration in the equatorial region of a patient with age-related macular degeneration.
Fig. 22: Fluorescein fundus angiograms of a rhesus monkey eye at the posterior pole.
Fig. 23
Fig. 24: Fluorescein photographs of anterior segment of an eye 21 h after occlusion of superior temporal and nasal vortex veins in a rhesus monkey (about 10 to 15 min after intravenous injection of fluorescein).
Fig. 25
Fig. 26: Photomicrograph of eye about 1 to 2 h after occlusion of all vortex veins, shows extensive choroidal and suprachoroidal haemorrhages.

Similar content being viewed by others

References

  1. Ramon Y, Cajal S. Recollections of My Life. Santiago Ramon Y Cajal. Translated by EH Craigie from the third Spanish edition (1923). Philadelphia: American Philosophical Society; 1937; p. 564-5.

  2. Hayreh SS. Blood supply of the optic nerve. In: Shaffer RN, Glaucoma Research Conference. Am J Ophthalmol. 1966;61:564.

    Google Scholar 

  3. Hayreh SS. Blood supply of the optic nerve head and its role in optic atrophy, glaucoma and oedema of the optic disc. Br J Ophthalmol. 1969;53:721–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Duke-Elder S, Wybar KC. System of Ophthalmology, Vol. 2: The anatomy of the visual system. London: Kimpton; 1961; p. 345,351, 358,69

  5. Wedel C, Ruysch F. Epistola anatomica, problematica ad Fredericum Ruyschium. De oculorum tunicis. Amstelaedami: Janssonio-Waesbergios; 1737.

  6. Olver JM. Functional anatomy of the choroidal circulation: methyl methacrylate casting of human choroid. Eye 1990;4:262–72.

    Article  PubMed  Google Scholar 

  7. Ashton N. Observations on the choroidal circulation. Br J Ophthalmol. 1952;36:465–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vilstrup G. Studies on the choroid circulation [Thesis (doctoral)]. Copenhagen: Ejnar Munksgaard; 1952.

  9. Weiter JJ, Ernest JT. Anatomy of the choroidal vasculature. Am J Ophthalmol. 1974;78:583–90.

    Article  CAS  PubMed  Google Scholar 

  10. Wybar KC. A study of the choroidal circulation of the eye in man. J Anat. 1954;88:94–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Shimizu K, Ujiie K Structure of ocular vessels. New York: Igaku-Shoin; 1978; p. 54,70-9, 108-24.

  12. Wybar KC. Vascular anatomy of the choroid in relation to selective localization of ocular disease. Br J Ophthalmol. 1954;38:513–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hayreh SS, Baines JA. Occlusion of the posterior ciliary artery. I. Effects on choroidal circulation. Br J Ophthalmol. 1972;56:719–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hayreh SS, Baines JA. Occlusion of the posterior ciliary artery. II. Chorio-retinal lesions Br J Ophthalmol Br J Ophthalmol. 1972;56:736–53.

    CAS  PubMed  Google Scholar 

  15. Hayreh SS, Baines JA. Occlusion of the posterior ciliary artery. III. Eff Opt nerve head Br J Ophthalmol. 1972;56:754–64.

    Article  CAS  Google Scholar 

  16. Hayreh SS, Chopdar A. Occlusion of the posterior ciliary artery. V. Protective influence of simultaneous vortex vein occlusion. Arch Ophthalmol. 1982;100:1481–91.

    Article  CAS  PubMed  Google Scholar 

  17. Loeffler KU, Hayreh SS, Tso MOM. The effects of simultaneous occlusion of the posterior ciliary artery and vortex veins: a histopathologic study. Arch Ophthalmol. 1994;112:674–82.

    Article  CAS  PubMed  Google Scholar 

  18. Hayreh SS. Segmental nature of the choroidal vasculature. Br J Ophthalmol. 1975;59:631–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hayreh SS. The Long posterior ciliary arteries. Graefes Arch Clin Exp Ophthalmol. 1974;192:197–213.

    Article  CAS  Google Scholar 

  20. Uyama M, Ohkuma H, Miki K, Koshibu A, Uraguchi K, Itotagawa S. [Pathology of choroidal circulatory disturbance. Part 3. Experimental choroidal circulatory disturbance, histopathological study of retino-choroidal lesion (author’s transl)]. Nihon Ganka Gakkai Zasshi. 1980;84:1924–46.

  21. Koshibu A, Itotagawa S. [Disruption and repair of blood-retinal barrier at the retinal pigment epithelium after experimentally produced choroidal circulatory disturbance (author’s transl)]. Nihon Ganka Gakkai Zasshi. 1980;84:721–35.

    CAS  PubMed  Google Scholar 

  22. Ueno S, Tsukahara I. [Ultrastructural observations of the retinal pigment epithelial cells following experimental occlusion of the posterior ciliary artery in the rhesus monkey. I. Early changes of the damaged retinal pigment epithelial cells]. Nihon Ganka Gakkai Zasshi. 1976;80:572–84.

    CAS  PubMed  Google Scholar 

  23. Ueno S, Harayama K, Tsukahara I. [Ultrastructural observations of the retinal pigment epithelial cells following experimental occlusion of the posterior ciliary artery in the rhesus monkey. II. Mid-phase changes of the damaged retinal pigment epithelial cells]. Nihon Ganka Gakkai Zasshi. 1977;81:728–42.

    CAS  PubMed  Google Scholar 

  24. Ueno S, Ohta M, Tsukahara I. [Ultrastructual observations of the retinal pigment epithelial cells following experimental occlusion of the posterior ciliary artery in the rhesus monkey. III. Late changes of the damaged retinal pigment epithelial cells]. Nihon Ganka Gakkai Zasshi. 1977;81:1801–13.

    CAS  PubMed  Google Scholar 

  25. Algvere P. Retinal detachment and pathology following experimental embolization of choroidal and retinal circulation. Albrecht von Graefes Arch Klin Exp Ophthalmol. 1976;201:123–34.

    Article  CAS  PubMed  Google Scholar 

  26. Cogan DG. Neurology of the visual system. Springfield, IL: Charles C. Thomas; 1966. p. 137, 173, 185–8.

  27. Henkind P, Charles NC, Pearson J. Histopathology of ischemic optic neuropathy. Am J Ophthalmol. 1970;69:78–90.

    Article  CAS  PubMed  Google Scholar 

  28. MacMichael IM, Cullen JF. Pathology of ischaemic optic neuropathy. In: Cant JS, editor. Proceedings, 2nd William Mackenzie Symposium on the optic nerve. London: Kimpton; 1972. p.108–16.

  29. Hinzpeter EN, Naumann G. Ischemic papilledema in giant-cell arteritis. Mucopolysaccharide deposition with normal intraocular pressure. Arch Ophthalmol. 1976;94:624–8.

    Article  CAS  PubMed  Google Scholar 

  30. Simoens P. [In vivo and in vitro study of experimental occlusion of choroidal and retinal blood vessels in the miniature pig]. Verh K Acad Geneeskd Belg. 1993;55:319–75.

    CAS  PubMed  Google Scholar 

  31. Hayreh SS. Inter-individual variation in blood supply of the optic nerve head. Its importance in various ischemic disorders of the optic nerve head, and glaucoma, low-tension glaucoma and allied disorders. Doc Ophthalmol. 1985;59:217–46.

    Article  CAS  PubMed  Google Scholar 

  32. Hayreh SS, Podhajsky PA, Zimmerman B. Ocular manifestations of giant cell arteritis. Am J Ophthalmol. 1998;125:509–20.

    Article  CAS  PubMed  Google Scholar 

  33. Hayreh SS, Servais GE, Virdi PS. Fundus lesions in malignant hypertension. VI. Hypertensive choroidopathy. Ophthalmology 1986;93:1383–400.

    Article  CAS  PubMed  Google Scholar 

  34. Kishi S, Tso MO, Hayreh SS. Fundus Lesions in Malignant Hypertension I. A Pathologic Study of Experimental Hypertensive Choroidopathy. Arch Ophthalmol. 1985;103:1189–97.

    Article  CAS  PubMed  Google Scholar 

  35. Bousquet E, Khandelwal N, Séminel M, Mehanna C, Salah S, Eymard P, et al. Choroidal Structural Changes in Patients with Birdshot Chorioretinopathy. Ocul Immunol Inflamm. 2021;29:346–51.

    Article  PubMed  Google Scholar 

  36. Amalric P. Acute choroidal ischaemia. Trans Ophthalmol Soc U K 1971;91:305–22.

    CAS  PubMed  Google Scholar 

  37. Hepburn ML. Inflammatory and vascular diseases of the choroid. Trans Ophthalmol Soc U K 1912;32:361–86.

    Google Scholar 

  38. Hepburn ML. The Doyne Memorial Lencture: The role played by the pigment and visual fields in the diagnosis of diseases of the fundus. Trans Ophthalmol Soc U K 1935;55:434–77.

    Google Scholar 

  39. Foulds WS, Lee WR, Taylor WO. Clinical and pathological aspects of choroidal ischaemia. Trans Ophthalmol Soc U K 1971;91:323–41.

    CAS  PubMed  Google Scholar 

  40. Hayreh SS. The choriocapillaris. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1974;192:165–79.

    Article  CAS  PubMed  Google Scholar 

  41. Gass JD. Acute posterior multifocal placoid pigment epitheliopathy. Arch Ophthalmol. 1968;80:177–85.

    Article  CAS  PubMed  Google Scholar 

  42. Deutman AF, Lion F. Choriocapillaris nonperfusion in acute multifocal placoid pigment epitheliopathy. Am J Ophthalmol. 1977;84:652–7.

    Article  CAS  PubMed  Google Scholar 

  43. Tsang BK-T, Chauhan DS, Haward R, Whiteman I, Frayne J, McLean C. Fatal Ischemic Stroke Complicating Acute Multifocal Placoid Pigment Epitheliopathy: Histopathological Findings. J Neuro-Ophthalmol. 2014;34:10–15.

    Article  Google Scholar 

  44. Priluck IA, Robertson DM, Buettner H. Acute posterior multifocal placoid pigment epitheliopathy. Urinary findings. Arch Ophthalmol. 1981;99:1560–2.

    Article  CAS  PubMed  Google Scholar 

  45. Kirkham TH, Ffytche TJ, Sanders MD. Placoid pigment epitheliopathy with retinal vasculitis and papillitis. Br J Ophthalmol. 1972;56:875–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hyvarinen L, Maumenee AE, George T, Weinstein GW. Fluorescein angiography of the choriocapillaris. Am J Ophthalmol. 1969;67:653–66.

    Article  CAS  PubMed  Google Scholar 

  47. Hamilton AM, Bird AC. Geographical choroidopathy. Br J Ophthalmol. 1974;58:784–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wright BE, Bird AC, Hamilton AM. Placoid pigment epitheliopathy and Harada’s disease. Br J Ophthalmol. 1978;62:609–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hayreh SS. Choroidal ischemiaischaemia. Retina. 1982;2:191–2.

    Article  CAS  PubMed  Google Scholar 

  50. Hayreh SS. Choroidal ischemiaischaemia after extra capsular cataract extraction by phacoemulsification. Retina 1982;2:191–3.

    Article  CAS  PubMed  Google Scholar 

  51. Amalric P. The choriocapillaris in the macular area. Clinical and angiographic study. Int Ophthalmol. 1983;6:149–53.

    Article  CAS  PubMed  Google Scholar 

  52. Hayreh SS. Ischemic optic neuropathy. Prog Retin Eye Res. 2009;28:34–62.

    Article  PubMed  Google Scholar 

  53. Hayreh SS. In vivo choroidal circulation and its watershed zones. Eye. 1990;4:273–89.

    Article  PubMed  Google Scholar 

  54. Chen JC, Fitzke FW, Pauliekhoff D, Bird AC. Poor choroidal perfusion is a cause of visual morbidity in age-related macular degeneration [abstract]. Investig Ophthalmol Vis Sci. 1989;30:153.

    Google Scholar 

  55. Ross RD, Barofsky JM, Cohen G, Baber WB, Palao SW, Gitter KA. Presumed macular choroidal watershed vascular filling, choroidal neovascularization, and systemic vascular disease in patients with age-related macular degeneration. Am J Ophthalmol. 1998;125:71–80.

    Article  CAS  PubMed  Google Scholar 

  56. Sarks SH. Ageing and degeneration in the macular region: a clinico-pathological study. Br J Ophthalmol. 1976;60:324–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kornzweig AL. Changes in the choriocapillaris associated with senile macular degeneration. Ann Ophthalmol. 1977;9:753–6. 59-62

    CAS  PubMed  Google Scholar 

  58. Corvi F, Tiosano L, Corradetti G, Nittala MG, et al. Choriocapillaris flow deficits as a risk factor for progression of age-related macular degeneration. Retina 2021;41:686–93.

    Article  CAS  PubMed  Google Scholar 

  59. Nesper PL, Ong JX, Fawzi AA. Exploring the Relationship Between Multilayered Choroidal Neovascularization and Choriocapillaris Flow Deficits in AMD. Investig Ophthalmol Vis Sci. 2021;62:12.

    Article  Google Scholar 

  60. Xu W, Grunwald JE, Metelitsina TI, DuPont JC, Ying GS, Martin ER, et al. Association of risk factors for choroidal neovascularization in age-related macular degeneration with decreased foveolar choroidal circulation. Am J Ophthalmol. 2010;150:40–7.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hayreh SS. Submacular choroidal vascular bed watershed zones and their clinical importance. Am J Ophthalmol. 2010;150:940–1.

    Article  PubMed  Google Scholar 

  62. Morrison JC, Van Buskirk EM. Microanatomy and modulation of the ciliary vasculature. Trans Ophthalmol Soc U K. 1986;105:131–9.

    PubMed  Google Scholar 

  63. Weiter J, Fine BS. A histologic study of regional choroidal dystrophy. Am J Ophthalmol. 1977;83:741–50.

    Article  CAS  PubMed  Google Scholar 

  64. Paton D, Duke JR. Primary familial amyloidosis. Ocular manifestations with histopathologic observations. Am J Ophthalmol. 1966;61:736–47.

    Article  CAS  PubMed  Google Scholar 

  65. Prince JH. The rabbit in eye research. Springfield, Illinois: Charles C. Thomas; 1964; p. 531, 539–40.

  66. Hayreh SS, Baines JA. Occlusion of the vortex veins. An experimental study. Br J Ophthalmol. 1973;57:217–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schmidt H. Beitrag zur Kenntniss der Embolie der Arteria Centralis Retinae. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1874;20:287–307.

    Article  Google Scholar 

  68. Crock G. Clinical syndromes of anterior segment ischaemia. Trans Ophthalmol Soc U K 1967;87:513–33.

    CAS  PubMed  Google Scholar 

  69. Harbitz F. Bilateral carotid arteritis. Arch Pathol Lab Med. 1926;1:499–510.

    Google Scholar 

  70. Leinfelder PJ, Black NM. Experimental Transposition of the Extraocular Muscles in Monkeys. Am J Ophthalmol. 1941;24:1115–9.

    Article  Google Scholar 

  71. Skipper E, Flint FJ. Symmetrical arterial occlusion of upper extremities head, and neck: a rare syndrome. Br Med J. 1952;2:9–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ask-Upmark E. On the pulseless disease outside of Japan. Acta Med Scand. 1954;149:161–78.

    Article  CAS  PubMed  Google Scholar 

  73. Knox DL. Ischemic ocular inflammation. Am J Ophthalmol. 1965;60:995–1002.

    Article  CAS  PubMed  Google Scholar 

  74. Wilson WA, Irvine SR. Pathologic changes following disruption of blood supply to iris and ciliary body. Trans Am Acad Ophthalmol Otolaryngol. 1955;59:501–2.

    CAS  PubMed  Google Scholar 

  75. Mizener JB, Podhajsky P, Hayreh SS. Ocular Ischemic Syndrome. Ophthalmology 1997;104:859–64.

    Article  CAS  PubMed  Google Scholar 

  76. Virdi PS, Hayreh SS. Anterior segment ischemiaischaemia after recession of various recti. An experimental study. Ophthalmology. 1987;94:1258–71.

    Article  Google Scholar 

  77. Krupin T, Johnson MF, Becker B. Anterior segment ischemiaischaemia after cyclocryotherapy. Am J Ophthalmol. 1977;84:426–8.

    Article  CAS  PubMed  Google Scholar 

  78. Ryan SJ, Goldberg MF. Anterior segment ischemiaischaemia following scleral buckling in sickle cell hemoglobinopathy. Am J Ophthalmol. 1971;72:35–50.

    Article  CAS  PubMed  Google Scholar 

  79. Friedman AH, Bloch R, Henkind P. Hypopyon and iris necrosis in angle-closure glaucoma. Report of two cases. Br J Ophthalmol. 1972;56:632–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hayreh SS, Scott WE. Fluorescein iris angiography. II. Disturbances in iris circulation following strabismus operation on the various recti. Arch Ophthalmol. 1978;96:1390–1400.

    Article  CAS  PubMed  Google Scholar 

  81. Amalric P. The angiography of the anterior segment of the eye. In: Shimizu K, editor. Proceedings of the International Symposium of Fluorescein Angiography, Tokyo, 1972. Tokyo: Igaku Shoin Ltd; 1974. p. 281–318.

  82. Morrison JC, Van, Buskirk EM. Anterior collateral circulation in the primate eye. Ophthalmology 1983;90:707–15.

    Article  CAS  PubMed  Google Scholar 

  83. Iovino C, Peiretti E, Braghiroli M, Tatti F, et al. Imaging of iris vasculature: current limitations and future perspective. Eye. 2022;36:930–40.

    Article  PubMed  Google Scholar 

  84. Henkind P. Angle Vessels in Normal Eyes. A Gonioscopic Evaluation and Anatomic Correlation. Br J Ophthalmol. 1964;48:551–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hayreh SS, Podhajsky PA, Zimmerman MB. Branch retinal artery occlusion natural history of visual outcome. Ophthalmology. 2009;16:1188–94.

    Article  Google Scholar 

  86. Hayreh SS, Podhajsky PA, Zimmerman MB. Retinal artery occlusion: associated systemic and ophthalmic abnormalities. Ophthalmology. 2009;116:1928–36.

    Article  PubMed  Google Scholar 

  87. Hayreh SS. Anterior ischaemic optic neuropathy. II. Fundus on ophthalmoscopy and fluorescein angiography. Br J Ophthalmol. 1974;58:964–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kearns TP. Collagen and rheumatic diseases: ophthalmic aspects. In: Mausolf FA, editor. The Eye and Systemic Disease. St. Louis: Mosby; 1975. p. 105–8.

  89. Hayreh SS. The blood supply of the optic nerve head and the evaluation of it: myth and reality. Prog Retin Eye Res. 2001;20:563–93.

    Article  CAS  PubMed  Google Scholar 

  90. Oosterhuis JA Fluorescein fundus angiography in retinal venous occlusion. In: Henkes HE, editor. Perspectives in ophthalmology. Amsterdam: Excerpta Medica; 1968. p. 29–47.

  91. Hayreh SS. Pathogenesis of occlusion of the central retinal vessels. Am J Ophthalmol. 1971;72:998–1011.

    Article  CAS  PubMed  Google Scholar 

  92. McLeod D, Ring CP. Cilio-retinal infarction after retinal vein occlusion. Br J Ophthalmol. 1976;60:419–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hayreh SS, Fraterrigo L, Jonas J. Central retinal vein occlusion associated with cilioretinal artery occlusion. Retina. 2008;28:581–94.

    Article  PubMed  Google Scholar 

  94. Stoffelns BM. [Isolated cilioretinal artery occlusion—clinical findings and outcome in 31 cases]. Klin Monbl Augenheilkd. 2012;229:338–42.

    CAS  PubMed  Google Scholar 

  95. McLeod D. Central retinal vein occlusion with cilioretinal infarction from branch flow exclusion and choroidal arterial steal. Retina. 2009;29:1381–95.

    Article  PubMed  Google Scholar 

  96. Glacet-Bernard A, Gaudric A, Touboul C, Coscas G. [Occlusion of the central retinal vein with occlusion of a cilioretinal artery: apropos of 7 cases]. J Fr Ophtalmol. 1987;10:269–77.

    CAS  PubMed  Google Scholar 

  97. Hayreh SS, Revie IH, Edwards J. Vasogenic origin of visual field defects and optic nerve changes in glaucoma. Br J Ophthalmol. 1970;54:461–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hayreh SS, Hayreh MS. Hemi-central retinal vein occulsion. Pathogenesis, clinical features, and natural history. Arch Ophthalmol. 1980;98:1600–09.

    Article  CAS  PubMed  Google Scholar 

  99. Hayreh SS, Zimmerman MB, Podhajsky P, Alward WLM. Nocturnal arterial hypotension and its role in optic nerve head and ocular ischemic disorders. Am J Ophthalmol. 1994;117:603–24.

    Article  CAS  PubMed  Google Scholar 

  100. Hayreh SS, Podhajsky P, Zimmerman MB. Role of nocturnal arterial hypotension in optic nerve head ischemic disorders. Ophthalmologica. 1999;213:76–96.

    Article  CAS  PubMed  Google Scholar 

  101. Hayreh SS, Zimmerman MB, Kimura A, Sanon A. Central retinal artery occlusion. Retinal survival time. Exp Eye Res. 2004;78:723–36.

    Article  CAS  PubMed  Google Scholar 

  102. Hayreh SS, Zimmerman MB. Amaurosis fugax in ocular vascular occlusive disorders: Prevalence and pathogeneses. Retina. 2014;34:115–22.

    Article  PubMed  Google Scholar 

  103. Hayreh SS, Zimmerman B. Management of giant cell arteritis. Our 27-year clinical study: new light on old controversies. Ophthalmologica. 2003;217:239–59.

    Article  PubMed  Google Scholar 

  104. Hayreh SS, Podhajsky PA, Zimmerman MB. Central and Hemicentral Retinal Vein Occlusion Role of Anti-Platelet Aggregation Agents and Anticoagulants. Ophthalmology. 2011;118:1603–11.

    Article  PubMed  Google Scholar 

  105. Leber T. Studien über den Flüssigkeitswechsel im Auge. Albrecht Von Graefes Arch Ophthalmol. 1873;19:87–195.

    Article  Google Scholar 

  106. Koster W. [Contributions to the theory of glaucoma] Beiträge zur Lehre vom Glaukom. Albrecht Von Graefes Arch Ophthalmol. 1895;41:30–112.

    Article  Google Scholar 

  107. Hayreh SS. Blood supply of the optic nerve head and its role in optic atrophy, glaucoma, and oedema of the optic disc. Br J Ophthalmol. 1969;53:721–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nishikawa M, Matsunaga H, Takahashi K, Matsumura M. Indocyanine green angiography in experimental choroidal circulatory disturbance. Ophthalmic Res. 2009;41:53–8.

    Article  CAS  PubMed  Google Scholar 

  109. Takahashi K, Kishi S. Remodeling of choroidal venous drainage after vortex vein occlusion following scleral buckling for retinal detachment. Am J Ophthalmol. 2000;129:191–8.

    Article  CAS  PubMed  Google Scholar 

  110. Sachsenweger R, Lukoff L. [Animal experimental studies on the sequelae of surgical occlusion of the vortex veins]. Klinische Monatsblatter fur Augenheilkd und fur augenarztliche Fortbild. 1959;134:364–73.

    CAS  Google Scholar 

  111. de Faria E, Silva D. [Cancer of the choroid and retinal detachment] Cancer de la choroide et décollement de la rétine. Annales d’oculistique. 1950;183:400–7.

    Google Scholar 

  112. Klien BA. Macular and extramacular serous chorieretinopathy. With remarks upon the role of an extrabulbar mechanism in its pathogenesis. Am J Ophthalmol. 1961;51:231–42.

    Article  CAS  PubMed  Google Scholar 

  113. Bonnet M. [Surgical occlusion of 2 vortex veins in the treatment of decompensated senile macular degeneration. A longer-term evaluation]. J Fr Ophtalmol. 1985;8:779–83.

    CAS  PubMed  Google Scholar 

Download references

Funding

Funding

Supported by research grants from the British Medical Research Council, EY-1151, EY-1576, EY 3330 and RR-59 from the U.S. National Institutes of Health, in part by unrestricted grants from Research to Prevent Blindness, Inc., New York.

Author information

Authors and Affiliations

Authors

Contributions

SSH was responsible for the writing and editing of the final manuscript. SBH provided feedback on the manuscript.

Corresponding author

Correspondence to Shelagh Bell Hayreh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Due to Dr. Hayreh’s death, some errors and omissions may exist in the article as published.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayreh, S.S., Hayreh, S.B. Uveal vascular bed in health and disease: lesions produced by occlusion of the uveal vascular bed and acute uveal ischaemic lesions seen clinically. Paper 2 of 2. Eye 37, 2617–2648 (2023). https://doi.org/10.1038/s41433-023-02417-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41433-023-02417-y

Search

Quick links