Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ganglion cell complex thickness changes in patients with different states of bipolar disorder



Neuroimaging studies in patients with bipolar disorder have suggested that a neuropathological process may be effective in this disease. Neurodegenerative changes in the retina can be followed by optical coherence tomography, a non-invasive imaging method that allows in vivo visualization of the retinal layers. The aim of this study was to investigate the possible differences in optical coherence tomography parameters during euthymic, manic, and depressive episodes in patients diagnosed with bipolar disorder.


A total of 150 patients with bipolar disorder were included in the study, divided into three groups (50 patients in a euthymic state, 50 patients in a manic state, and 50 patients in a depressive state) and compared with 50 healthy controls. Ganglion cell complex thickness was measured with automated macular segmentation software of spectral-domain optical coherence tomography.


Ganglion cell complex thicknesses were thicker in all quadrants in patient groups than the control group but the differences were significant in perifoveal superior and perifoveal inferior quadrants (p < 0.001, p < 0.001). There were no differences in ganglion cell complex thickness among the patient groups (p > 0.05).


The evaluation of ganglion cell complex thickness by spectral-domain optical coherence tomography may give a clue for monitoring neurodegenerative changes in patients with bipolar disorder.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Macular inner retinal layers segmented by SD-OCT.
Fig. 2: The thickness map of inner retinal layers detected by the software of SD-OCT.


  1. 1.

    Akiskal HS, Bourgeois ML, Angst J, Post R, Moller H, Hirschfeld R. Re-evaluating the prevalence of and diagnostic composition within the broad clinical spectrum of bipolar disorders. J Affect Disord. 2000;59(Suppl 1):S5–S30.

    Article  Google Scholar 

  2. 2.

    Saglam Aykut D, Civil Arslan F, Ozkorumak Karaguzel E, Aral G, Karakullukcu S. The relationship between neutrophil-lymphocyte, platelet-lymphocyte ratio and cognitive functions in bipolar disorder. Nord J Psychiatry. 2018;72(2):119–23.

    Article  Google Scholar 

  3. 3.

    American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 4th ed. American Psychiatric Association: Washington, DC; 2000 [text revision].

  4. 4.

    Phillips ML, Vieta E. Identifying functional neuroimaging biomarkers of bipolar disorder: toward DSM-V. Schizophr Bull. 2007;33(4):893–904.

    Article  Google Scholar 

  5. 5.

    Karadağ AS, Kalenderoğlu A. Psychiatric disorders and eye: optical coherent tomography in psychiatry aspect. Turkish J Clin Psychiatry. 2017;20(3):27–237.

    Google Scholar 

  6. 6.

    Kalelioglu T, Akkus M, Karamustafalioglu N, Genc A, Genc ES, Cansiz A, et al. Neutrophil-lymphocyte and platelet-lymphocyte ratios as inflammation markers for bipolar disorder. Psychiatry Res. 2015;228(3):925–7.

    Article  Google Scholar 

  7. 7.

    Mert DG, Terzi H. Mean platelet volume in bipolar disorder: the search for an ideal biomarker. Neuropsychiatr Dis Treat. 2016;12:2057–62.

    CAS  Article  Google Scholar 

  8. 8.

    Rosenblat JD, Brietzke E, Mansur RB, Maruschak NA, Lee Y, McIntyre RS. Inflammation as a neurobiological substrate of cognitive impairment in bipolar disorder: evidence, pathophysiology and treatment implications. J Affect Disord. 2015;188:149–59.

    Article  Google Scholar 

  9. 9.

    Bock M, Paul F, Dörr J. Diagnostik und Verlaufsbeurteilung der Multiplen Sklerose: Stellenwert der optischen Kohärenztomographie. Nervenarzt. 2013;84(4):483–92. German

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Jindahra P, Hedges TR, Mendoza-Santiesteban CE, Plant GT. Optical coherence tomography of the retina: applications in neurology. Curr Opin Neurol. 2010;23(1):16–2.

    Article  Google Scholar 

  11. 11.

    Jeoung JW, Choi YJ, Park KH, Kim DM. Macular ganglion cell imaging study: glaucoma diagnostic accuracy of spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54(7):4422–9.

    Article  Google Scholar 

  12. 12.

    Garcia-Martin E, Gavin A, Garcia-Campayo J, Vilades E, Orduna E, Polo V, et al. Visual function and retinal changes in patients with bipolar disorder. Retina. 2019;39(10):2012–21.

    CAS  Article  Google Scholar 

  13. 13.

    Khalil DH, Said MM. Peripapillary retinal nerve fiber layer and ganglion cell complex degeneration in Egyptian patients with bipolar disorder. Eye. 2019;33(12):1852–8.

    Article  Google Scholar 

  14. 14.

    Khalil MA, Saleh AA, Gohar SM, Khalil DH, Said M. Optical coherence tomography findings in patients with bipolar disorder. J Affect Disord. 2017;218:115–22.

    Article  Google Scholar 

  15. 15.

    Kalenderoglu A, Sevgi-Karadag A, Celik M, Egilmez OB, Han-Almis B, Ozen ME. Can the retinal ganglion cell layer (GCL) volume be a new marker to detect neurodegeneration in bipolar disorder? Compr Psychiatry. 2016;67:66–72.

    Article  Google Scholar 

  16. 16.

    Mehraban A, Samimi SM, Entezari M, Seifi MH, Nazari M, Yaseri M. Peripapillary retinal nerve fiber layer thickness in bipolar disorder. Graefes Arch Clin Exp Ophthalmol. 2016;254(2):365–71.

    Article  Google Scholar 

  17. 17.

    Polo V, Satue M, Gavin A, Vilades E, Orduna E, Cipres M, et al. Ability of swept source OCT to detect retinal changes in patients with bipolar disorder. Eye. 2019;33(4):549–56.

    CAS  Article  Google Scholar 

  18. 18.

    Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry. 1960;23(1):56.

    CAS  Article  Google Scholar 

  19. 19.

    Young RC, Biggs JT, Ziegler VE, Meyer DA. A rating scale for mania: reliability, validity and sensitivity. Br J Psychiatry. 1978;133(5):429–35.

    CAS  Article  Google Scholar 

  20. 20.

    Frey BN, Zunta-Soares GB, Caetano SC, Nicoletti MA, Hatch JP, Brambilla P, et al. Illness duration and total brain gray matter in bipolar disorder: evidence for neurodegeneration? Eur Neuropsychopharmacol. 2008;18(10):717–22.

    CAS  Article  Google Scholar 

  21. 21.

    Vita A, De Peri L, Sacchetti E. Gray matter, white matter, brain, and intracranial volumes in first-episode bipolar disorder: a meta-analysis of magnetic resonance imaging studies. Bipolar Disord. 2009;11(8):807–14.

    Article  Google Scholar 

  22. 22.

    Ascaso FJ, Rodriguez-Jimenez R, Cabezon L, Lopez-Anton R, Santabarbara J, De la Camara C, et al. Retinal nerve fiber layer and macular thickness in patients with schizophrenia: influence of recent illness episodes. Psychiatry Res. 2015;229(1-2):230–6.

    Article  Google Scholar 

  23. 23.

    Green AJ, McQuaid S, Hauser SL, Allen IV, Lyness R. Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration. Brain. 2010;133(Pt 6):1591–601.

    Article  Google Scholar 

  24. 24.

    Yildiz M, Alim S, Batmaz S, Demir S, Songur E, Ortak H, et al. Duration of the depressive episode is correlated with ganglion cell inner plexifrom layer and nasal retinal fiber layer thicknesses: optical coherence tomography findings in major depression. Psychiatry Res Neuroimaging. 2016;251:60–66.

    Article  Google Scholar 

  25. 25.

    Navari S, Dazzan P. Do antipsychotic drugs affect brain structure? A systematic and critical review of MRI findings. Psychol Med. 2009;39(11):1763–77.

    CAS  Article  Google Scholar 

  26. 26.

    Chiu CT, Wang Z, Hunsberger JG, Chuang DM. Therapeutic potential of mood stabilizers lithium and valproic acid: beyond bipolar disorder. Pharm Rev. 2013;65(1):105–42.

    CAS  Article  Google Scholar 

  27. 27.

    Kempton MJ, Geddes JR, Ettinger U, Williams SC, Grasby PM. Meta-analysis, database, and meta-regression of 98 structural imaging studies in bipolar disorder. Arch Gen Psychiatry. 2008;65(9):1017–32.

    Article  Google Scholar 

  28. 28.

    Pardoe HR, Berg AT, Jackson GD. Sodium valproate use is associated with reduced parietal lobe thickness and brain volume. Neurology. 2013;80(20):1895–1900.

    CAS  Article  Google Scholar 

  29. 29.

    Bubl E, Ebert D, Kern E, van Elst LT, Bach M. Effect of antidepressive therapy on retinal contrast processing in depressive disorder. Br J Psychiatry. 2012;201:151–8.

    Article  Google Scholar 

  30. 30.

    Bubl E, Kern E, Ebert D, Bach M, Tebartz van Elst L. Seeing gray when feeling blue? Depression can be measured in the eye of the diseased. Biol Psychiatry. 2010;68(2):205–8.

    Article  Google Scholar 

Download references

Author information




YC and EM designed the study and the computational framework and analysed the data. AMC, II, IEC, MO, and IE contributed to the interpretation of the results and revising work critically. YC wrote the manuscript with input from all authors. YC and EM conceived the study and were in charge of overall direction and planning.

Corresponding author

Correspondence to Yusuf Cokunlu.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cokunlu, Y., Mirza, E., Caliskan, A.M. et al. Ganglion cell complex thickness changes in patients with different states of bipolar disorder. Eye (2021).

Download citation


Quick links