Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Expanding the phenotypic spectrum of LIG4 pathogenic variations: neuro-histopathological description of 4 fetuses with stenosis of the aqueduct

Abstract

Severe ventriculomegaly is a rare congenital brain defect, usually detected in utero, of poor neurodevelopmental prognosis. This ventricular enlargement can be the consequence of different mechanisms: either by a disruption of the cerebrospinal fluid circulation or abnormalities of its production/absorption. The aqueduct stenosis is one of the most frequent causes of obstructive ventriculomegaly, however, fewer than 10 genes have been linked to this condition and molecular bases remain often unknown. We report here 4 fetuses from 2 unrelated families presenting with ventriculomegaly at prenatal ultra-sonography as well as an aqueduct stenosis and skeletal abnormalities as revealed by fetal autopsy. Genome sequencing identified biallelic pathogenic variations in LIG4, a DNA-repair gene responsible for the LIG4 syndrome which associates a wide range of clinical manifestations including developmental delay, microcephaly, short stature, radiation hypersensitivity and immunodeficiency. Thus, not only this report expands the phenotype spectrum of LIG4-related disorders, adding ventriculomegaly due to aqueduct stenosis, but we also provide the first neuropathological description of fetuses carrying LIG4 pathogenic biallelic variations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neuropathological and X-Rays skeletal findings in fetus 1 and fetus 3C.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in the published article (and its supplementary information files). The genetic variations identified there are already present in ClinVar (ID: 429520, 433156, 7673, cf. Supplementary Fig. 1) and we have submitted them again as pathogenic/likely pathogenic in ClinVar (submission name: SUB14153886, accession numbers: SCV004231896, SCV004231897, SCV004231898).

References

  1. Correa-Villaseñor A, Cragan J, Kucik J, O’Leary L, Siffel C, Williams L. The Metropolitan Atlanta Congenital Defects Program: 35 years of birth defects surveillance at the Centers for Disease Control and Prevention. Birt Defects Res A Clin Mol Teratol. 2003;67:617–24. https://doi.org/10.1002/bdra.10111.

    Article  CAS  Google Scholar 

  2. Lord J, McMullan DJ, Eberhardt RY, Rinck G, Hamilton SJ, Quinlan-Jones E, et al. Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography (PAGE): a cohort study. Lancet Lond Engl. 2019;393:747–57. https://doi.org/10.1016/S0140-6736(18)31940-8.

    Article  CAS  Google Scholar 

  3. Petrovski S, Aggarwal V, Giordano JL, Stosic M, Wou K, Bier L, et al. Whole-exome sequencing in the evaluation of fetal structural anomalies: a prospective cohort study. Lancet Lond Engl. 2019;393:758–67. https://doi.org/10.1016/S0140-6736(18)32042-7.

    Article  CAS  Google Scholar 

  4. McKechnie L, Vasudevan C, Levene M. Neonatal outcome of congenital ventriculomegaly. Semin Fetal Neonatal Med. 2012;17:301–7. https://doi.org/10.1016/j.siny.2012.06.001.

    Article  PubMed  Google Scholar 

  5. Gaglioti P, Danelon D, Bontempo S, Mombrò M, Cardaropoli S, Todros T. Fetal cerebral ventriculomegaly: outcome in 176 cases. Ultrasound Obstet Gynecol J Int Soc Ultrasound Obstet Gynecol. 2005;25:372–7. https://doi.org/10.1002/uog.1857.

    Article  CAS  Google Scholar 

  6. Crawford JR, Isaacs H. Perinatal (fetal and neonatal) choroid plexus tumors: a review. Childs Nerv Syst. 2019;35:937–44. https://doi.org/10.1007/s00381-019-04135-x.

    Article  PubMed  Google Scholar 

  7. Maller VV, Gray RI. Noncommunicating Hydrocephalus. Semin Ultrasound CT MR. 2016;37:109–19. https://doi.org/10.1053/j.sult.2015.12.004.

    Article  PubMed  Google Scholar 

  8. Emery SP, Narayanan S, Greene S. Fetal aqueductal stenosis: Prenatal diagnosis and intervention. Prenat Diagn. 2020;40:58–65. https://doi.org/10.1002/pd.5527.

    Article  PubMed  Google Scholar 

  9. Finckh U, Schröder J, Ressler B, Veske A, Gal A. Spectrum and detection rate of L1CAM mutations in isolated and familial cases with clinically suspected L1-disease. Am J Med Genet. 2000;92:40–6. https://doi.org/10.1002/(sici)1096-8628(20000501)92:1<40::aid-ajmg>3.0.co;2-r.

    Article  CAS  PubMed  Google Scholar 

  10. Jacquemin V, Antoine M, Duerinckx S, Massart A, Desir J, Perazzolo C, et al. TrkA mediates effect of novel KIDINS220 mutation in human brain ventriculomegaly. Hum Mol Genet. 2021;29:3757–64. https://doi.org/10.1093/hmg/ddaa245.

    Article  CAS  PubMed  Google Scholar 

  11. Gilissen C, Hoischen A, Brunner HG, Veltman JA. Disease gene identification strategies for exome sequencing. Eur J Hum Genet EJHG. 2012;20:490–7. https://doi.org/10.1038/ejhg.2011.258.

    Article  CAS  PubMed  Google Scholar 

  12. O’Driscoll M, Cerosaletti KM, Girard PM, Dai Y, Stumm M, Kysela B, et al. DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency. Mol Cell. 2001;8:1175–85. https://doi.org/10.1016/s1097-2765(01)00408-7.

    Article  PubMed  Google Scholar 

  13. Guihard-Costa A-M, Menez F, Delezoide AL. Standards for dysmorphological diagnosis in human fetuses. Pediatr Dev Pathol J Soc Pediatr Pathol Paediatr Pathol Soc. 2003;6:427–34. https://doi.org/10.1007/s10024-003-1004-6.

    Article  Google Scholar 

  14. Tavtigian SV, Deffenbaugh AM, Yin L, Judkins T, Scholl T, Samollow PB, et al. Comprehensive statistical study of 452 BRCA1 missense substitutions with classification of eight recurrent substitutions as neutral. J Med Genet. 2006;43:295–305. https://doi.org/10.1136/jmg.2005.033878.

    Article  CAS  PubMed  Google Scholar 

  15. Sim N-L, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012;40:W452–457. https://doi.org/10.1093/nar/gks539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Flicek P, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, et al. Ensembl 2012. Nucleic Acids Res. 2012;40:D84–90. https://doi.org/10.1093/nar/gkr991.

    Article  CAS  PubMed  Google Scholar 

  17. Brunet BA, Dave N. Unique heterozygous presentation in an infant with DNA ligase IV syndrome. Ann Allergy Asthma Immunol Publ Am Coll Allergy Asthma Immunol. 2017;119:379–80. https://doi.org/10.1016/j.anai.2017.07.017.

    Article  Google Scholar 

  18. Murray JE, Bicknell LS, Yigit G, Duker AL, van Kogelenberg M, Haghayegh S, et al. Extreme growth failure is a common presentation of ligase IV deficiency. Hum Mutat. 2014;35:76–85. https://doi.org/10.1002/humu.22461.

    Article  CAS  PubMed  Google Scholar 

  19. Chang HHY, Pannunzio NR, Adachi N, Lieber MR. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol. 2017;18:495–506. https://doi.org/10.1038/nrm.2017.48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grawunder U, Zimmer D, Fugmann S, Schwarz K, Lieber MR. DNA ligase IV is essential for V(D)J recombination and DNA double-strand break repair in human precursor lymphocytes. Mol Cell. 1998;2:477–84. https://doi.org/10.1016/s1097-2765(00)80147-1.

    Article  CAS  PubMed  Google Scholar 

  21. Madhu R, Beaman GM, Chandler KE, O’Sullivan J, Urquhart JE, Khan N, et al. Ligase IV syndrome can present with microcephaly and radial ray anomalies similar to Fanconi anaemia plus fatal kidney malformations. Eur J Med Genet. 2020;63:103974 https://doi.org/10.1016/j.ejmg.2020.103974.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nickless A, Bailis JM, You Z. Control of gene expression through the nonsense-mediated RNA decay pathway. Cell Biosci. 2017;7:26 https://doi.org/10.1186/s13578-017-0153-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Staines Boone AT, Chinn IK, Alaez-Versón C, Yamazaki-Nakashimada MA, Carrillo-Sánchez K, García-Cruz MLH, et al. Failing to Make Ends Meet: The Broad Clinical Spectrum of DNA Ligase IV Deficiency. Case Series and Review of the Literature. Front Pediatr. 2018;6:426 https://doi.org/10.3389/fped.2018.00426.

    Article  PubMed  Google Scholar 

  24. Bousfiha A, Jeddane L, Picard C, Ailal F, Bobby Gaspar H, Al-Herz W, et al. The 2017 IUIS Phenotypic Classification for Primary Immunodeficiencies. J Clin Immunol. 2018;38:129–43. https://doi.org/10.1007/s10875-017-0465-8.

    Article  PubMed  Google Scholar 

  25. Varon R, Demuth I, Chrzanowska KH. Nijmegen Breakage Syndrome. In: Adam MP, Everman DB, Mirzaa GM, Pagon RA, Wallace SE, Bean LJ, et al., editors. GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993.

  26. Jasin M, Rothstein R. Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol. 2013;5:a012740 https://doi.org/10.1101/cshperspect.a012740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Seemanová E, Passarge E, Beneskova D, Houstĕk J, Kasal P, Sevcíková M. Familial microcephaly with normal intelligence, immunodeficiency, and risk for lymphoreticular malignancies: a new autosomal recessive disorder. Am J Med Genet. 1985;20:639–48. https://doi.org/10.1002/ajmg.1320200410.

    Article  PubMed  Google Scholar 

  28. van der Burgt I, Chrzanowska KH, Smeets D, Weemaes C. Nijmegen breakage syndrome. J Med Genet. 1996;33:153–6. https://doi.org/10.1136/jmg.33.2.153.

    Article  PubMed  PubMed Central  Google Scholar 

  29. White RR, Vijg J. Do DNA Double-Strand Breaks Drive Aging? Mol Cell. 2016;63:729–38. https://doi.org/10.1016/j.molcel.2016.08.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was made possible through access to the data generated by the France Genomic Medicine Plan 2025. We wish to express our sincere gratitude to the parents for their participation.

Author information

Authors and Affiliations

Authors

Contributions

R.N. and L.B contributed to synthetizing and reviewing data, and writing of the manuscript. L.L., A.F, NT., S.G., N.B., A.C., T.R. and F.R. contributed to generation of data and provided feedback on the manuscript. T.A.B provided project supervision and reviewed the manuscript.

Corresponding author

Correspondence to Tania Attié-Bitach.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all the parents of the fetuses included in this study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicolle, R., Boutaud, L., Loeuillet, L. et al. Expanding the phenotypic spectrum of LIG4 pathogenic variations: neuro-histopathological description of 4 fetuses with stenosis of the aqueduct. Eur J Hum Genet (2024). https://doi.org/10.1038/s41431-024-01558-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41431-024-01558-2

Search

Quick links