Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

BRAT1–related disorders: phenotypic spectrum and phenotype-genotype correlations from 97 patients

Abstract

BRAT1 biallelic variants are associated with rigidity and multifocal seizure syndrome, lethal neonatal (RMFSL), and neurodevelopmental disorder associating cerebellar atrophy with or without seizures syndrome (NEDCAS). To date, forty individuals have been reported in the literature. We collected clinical and molecular data from 57 additional cases allowing us to study a large cohort of 97 individuals and draw phenotype-genotype correlations. Fifty-nine individuals presented with BRAT1-related RMFSL phenotype. Most of them had no psychomotor acquisition (100%), epilepsy (100%), microcephaly (91%), limb rigidity (93%), and died prematurely (93%). Thirty-eight individuals presented a non-lethal phenotype of BRAT1-related NEDCAS phenotype. Seventy-six percent of the patients in this group were able to walk and 68% were able to say at least a few words. Most of them had cerebellar ataxia (82%), axial hypotonia (79%) and cerebellar atrophy (100%). Genotype-phenotype correlations in our cohort revealed that biallelic nonsense, frameshift or inframe deletion/insertion variants result in the severe BRAT1-related RMFSL phenotype (46/46; 100%). In contrast, genotypes with at least one missense were more likely associated with NEDCAS (28/34; 82%). The phenotype of patients carrying splice variants was variable: 41% presented with RMFSL (7/17) and 59% with NEDCAS (10/17).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Brain magnetic resonance image (MRI) of individuals with biallelic BRAT1 variants.
Fig. 2: Photographs of individuals with BRAT1-related disorders.
Fig. 3: Graphical representation of BRAT1 variants (IBS 1.0.3).
Fig. 4: Genotypes of patients with RMFSL and NEDCAS phenotypes.
Fig. 5: Genotype-phenotype correlations for BRAT1 variants.

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Aglipay JA, Martin SA, Tawara H, Lee SW, Ouchi T. ATM activation by ionizing radiation requires BRCA1-associated BAAT1. J Biol Chem. 2006;281:9710–8.

    Article  CAS  PubMed  Google Scholar 

  2. Ouchi M, Ouchi T. Regulation of ATM/DNA-PKcs phosphorylation by BRCA1-associated BAAT1. Genes Cancer. 2010;1:1211–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. So EY, Ouchi T. The potential role of BRCA1-associated ATM activator-1 (BRAT1) in regulation of mTOR. J Cancer Biol Res. 2013;1:1001.

    PubMed  PubMed Central  Google Scholar 

  4. So EY, Ouchi T. BRAT1 deficiency causes increased glucose metabolism and mitochondrial malfunction. BMC Cancer. 2014;14:548.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Puffenberger EG, Jinks RN, Sougnez C, Cibulskis K, Willert RA, Achilly NP, et al. Genetic mapping and exome sequencing identify variants associated with five novel diseases. PLoS ONE. 2012;7:e28936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hanes I, Kozenko M, Callen DJA. Lethal neonatal rigidity and multifocal seizure syndrome—a misnamed disorder? Pediatr Neurol. 2015;53:535–40.

    Article  PubMed  Google Scholar 

  7. Valence S, Cochet E, Rougeot C, Garel C, Chantot-Bastaraud S, Lainey E, et al. Exome sequencing in congenital ataxia identifies two new candidate genes and highlights a pathophysiological link between some congenital ataxias and early infantile epileptic encephalopathies. Genet Med. 2019;21:553–63.

    Article  CAS  PubMed  Google Scholar 

  8. Colak FK, Guleray N, Azapagasi E, Yazıcı MU, Aksoy E, Ceylan N. An intronic variant in BRAT1 creates a cryptic splice site, causing epileptic encephalopathy without prominent rigidity. Acta Neurol Belg. 2020;120:1425–32.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Saunders CJ, Miller NA, Soden SE, Dinwiddie DL, Noll A, Alnadi NA, et al. Rapid whole-genome sequencing for genetic disease diagnosis in neonatal intensive care units. Sci Transl Med. 2012;4:154ra135.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Saitsu H, Yamashita S, Tanaka Y, Tsurusaki Y, Nakashima M, Miyake N, et al. Compound heterozygous BRAT1 mutations cause familial Ohtahara syndrome with hypertonia and microcephaly. J Hum Genet. 2014;59:687–90.

    Article  CAS  PubMed  Google Scholar 

  11. Straussberg R, Ganelin-Cohen E, Goldberg-Stern H, Tzur S, Behar DM, Smirin-Yosef P, et al. Lethal neonatal rigidity and multifocal seizure syndrome – report of another family with a BRAT1 mutation. Eur J Paediatr Neurol. 2015;19:240–2.

    Article  PubMed  Google Scholar 

  12. van de Pol LA, Wolf NI, van Weissenbruch MM, Stam CJ, Weiss JM, Waisfisz Q, et al. Early-onset severe encephalopathy with epilepsy: the BRAT1 gene should be added to the list of causes. Neuropediatrics. 2015;46:392–400.

    Article  PubMed  Google Scholar 

  13. Fernández-Jáen A, Álvarez S, So EY, Ouchi T, de la Peña MJ, Duat A, et al. Mutations in BRAT1 cause autosomal recessive progressive encephalopathy: report of a Spanish patient. Eur J Paediatr Neurol. 2016;20:421–5.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Horn D, Weschke B, Knierim E, Fischer‐Zirnsak B, Stenzel W, Schuelke M, et al. BRAT1 mutations are associated with infantile epileptic encephalopathy, mitochondrial dysfunction, and survival into childhood. Am J Med Genet A. 2016;170:2274–81.

    Article  CAS  PubMed  Google Scholar 

  15. Mundy SA, Krock BL, Mao R, Shen JJ. BRAT1-related disease—identification of a patient without early lethality. Am J Med Genet A. 2016;170:699–702.

    Article  CAS  PubMed  Google Scholar 

  16. Smith NJ, Lipsett J, Dibbens LM, Heron SE. BRAT1-associated neurodegeneration: intra-familial phenotypic differences in siblings. Am J Med Genet A. 2016;170:3033–8.

    Article  CAS  PubMed  Google Scholar 

  17. Srivastava S, Olson HE, Cohen JS, Gubbels CS, Lincoln S, Davis BT, et al. BRAT1 mutations present with a spectrum of clinical severity. Am J Med Genet A. 2016;170:2265–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Srivastava S, Naidu S. Epileptic encephalopathy due to BRAT1 pathogenic variants. Pediatr Neurol Briefs. 2016;30:45.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Celik Y, Okuyaz C, Arslankoylu AE, Ceylaner S. Lethal neonatal rigidity and multifocal seizure syndrome with a new mutation in BRAT1. Epilepsy Behav Case Rep. 25 mai. 2017;8:2.

    Google Scholar 

  20. Oatts JT, Duncan JL, Hoyt CS, Slavotinek AM, Moore AT. Inner retinal dystrophy in a patient with biallelic sequence variants in BRAT1. Ophthalmic Genet. 2017;38:559–61.

    Article  CAS  PubMed  Google Scholar 

  21. Van Ommeren RH, Gao AF, Blaser SI, Chitayat DA, Hazrati LN. BRAT1 mutation: the first reported case of Chinese origin and review of the literature. J Neuropathol Exp Neurol. 2018;77:1071–8.

    Article  PubMed  Google Scholar 

  22. Szymańska K, Laure-Kamionowska M, Szczałuba K, Koppolu A, Furmanek M, Kuśmierska K, et al. Clinico-pathological correlation in case of BRAT1 mutation. Folia Neuropathol. 2018;56:362–71.

    Article  PubMed  Google Scholar 

  23. Mahjoub A, Cihlarova Z, Tétreault M, MacNeil L, Sondheimer N, Caldecott KW, et al. Homozygous pathogenic variant in BRAT1 associated with nonprogressive cerebellar ataxia. Neurol Genet. 2019;5:e359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Scheffer IE, Boysen KE, Schneider AL, Myers CT, Mehaffey MG, Rochtus AM, et al. BRAT1 encephalopathy: a recessive cause of epilepsy of infancy with migrating focal seizures. Dev Med Child Neurol. 2020;62:1096–9.

    Article  PubMed  Google Scholar 

  25. Burgess R, Wang S, McTague A, Boysen KE, Yang X, Zeng Q, et al. The genetic landscape of epilepsy of infancy with migrating focal seizures. Ann Neurol. 2019;86:821–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pourahmadiyan A, Heidari M, Ardakani HS, Noorian S, Savad S. A novel pathogenic variant of BRAT1 gene causes rigidity and multifocal seizure syndrome, lethal neonatal. Int J Neurosci. 2021;131:875–8.

    Article  CAS  PubMed  Google Scholar 

  27. Skafi O, Fawaz F, Merhi B, Jouni H, MMansour S, Harb R, et al. Rigidity with multifocal seizure syndrome, lethal neonatal in a lebanese neonate. A rare case report. J Pediatr Disord Neonatal Care. 2018;1:106.

    Google Scholar 

  28. Li W, Wu S, Xu H, Zhao X, Pan Y, Huang H, et al. Novel variant in BRAT1 with the lethal neonatal rigidity and multifocal seizure syndrome. Pediatr Res. 2021;1:7.

    Google Scholar 

  29. Balasundaram P, Fijas M, Nafday S. A rare case of lethal neonatal rigidity and multi-focal seizure syndrome. Cureus. 2021;13:e13600.

    PubMed  PubMed Central  Google Scholar 

  30. Sobreira N, Schiettecatte F, Valle D, Hamosh A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum Mutat. 2015;36:928–30.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nuovo S, Baglioni V, De Mori R, Tardivo S, Caputi C, Ginevrino M, et al. Clinical variability at the mild end of BRAT1-related spectrum: evidence from two families with genotype-phenotype discordance. Hum Mutat. 2022;43:67–73.

    Article  CAS  PubMed  Google Scholar 

  32. Cornet MC, Morabito V, Lederer D, Glass HC, Santos SF, Numis AL, et al. Neonatal presentation of genetic epilepsies: early differentiation from acute provoked seizures. Epilepsia. 2021;62:1907–20.

    Article  CAS  PubMed  Google Scholar 

  33. Low LH, Chow YL, Li Y, Goh CP, Putz U, Silke J, et al. Nedd4 family interacting protein 1 (Ndfip1) is required for ubiquitination and nuclear trafficking of BRCA1-associated ATM activator 1 (BRAT1) during the DNA damage response. J Biol Chem. 2015;290:7141–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Smith ED, Blanco K, Sajan SA, Hunter JM, Shinde DN, Wayburn B, et al. A retrospective review of multiple findings in diagnostic exome sequencing: half are distinct and half are overlapping diagnoses. Genet Med. 2019;21:2199–207.

    Article  PubMed  PubMed Central  Google Scholar 

  35. AlAbdi L, Alrashseed S, Alsulaiman A, Helaby R, Imtiaz F, Alhamed M, et al. Residual risk for additional recessive diseases in consanguineous couples. Genet Med Off J Am Coll Med Genet. 2021;23:2448–54.

    CAS  Google Scholar 

  36. Bunod R, Doummar D, Whalen S, Keren B, Chantot-Bastaraud S, Maincent K, et al. Congenital immobility and stiffness related to biallelic ATAD1 variants. Neurol Genet. 2020;6:e520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Martin S, Chamberlin A, Shinde DN, Hempel M, Strom TM, Schreiber A, et al. De novo variants in GRIA4 lead to intellectual disability with or without seizures and gait abnormalities. Am J Hum Genet. 2017;101:1013–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chong JX, McMillin MJ, Shively KM, Beck AE, Marvin CT, Armenteros JR, et al. De novo mutations in NALCN cause a syndrome characterized by congenital contractures of the limbs and face, hypotonia, and developmental delay. Am J Hum Genet. 2015;96:462–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Patak J, Gilfert J, Byler M, Neerukonda V, Thiffault I, Cross L, et al. MAGEL2-related disorders: a study and case series. Clin Genet. 2019;96:493–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Aldaz CM, Hussain T. WWOX loss of function in neurodevelopmental and neurodegenerative disorders. Int J Mol Sci. 2020;21:8922.

  41. Piard J, Hawkes L, Milh M, Villard L, Borgatti R, Romaniello R, et al. The phenotypic spectrum of WWOX-related disorders: 20 additional cases of WOREE syndrome and review of the literature. Genet Med. 2019;21:1308–18.

    Article  CAS  PubMed  Google Scholar 

  42. Gatti M, Magri S, Nanetti L, Sarto E, Bella DD, Salsano E, et al. From congenital microcephaly to adult onset cerebellar ataxia: distinct and overlapping phenotypes in patients with PNKP gene mutations. Am J Med Genet A. 2019;179:2277–83.

    Article  CAS  PubMed  Google Scholar 

  43. Riso V, Galatolo D, Barghigiani M, Galosi S, Tessa A, Ricca I, et al. A NGS-based analysis on a large cohort of ataxic patients refines the clinical spectrum associated with SCA21. Eur J Neurol. 2021;28:2784–8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the families for their participation in this study. Funding: SS received funding from National Institute of Health/National Institute of Neurological Disorders and Stroke (NIH/NINDS) (K23NS119666). FSA acknowledges the support of King Salman Center for Disability Research through Research Group no RG-2022-011.

Author information

Authors and Affiliations

Authors

Contributions

CE, SV, GD, RM collected clinical and molecular data. CE, JP analyzed and interpreted data and wrote the manuscript. JP, LVM designed the study. SV, RM, AA, EA, FSA, VB, IB, MB-L, EB, IB, EB-B, A-LB, AB, DKB, CC, MRC, M-CC, CC, OD, VD, A-SD-P, MCDG, MD-F, HE, KC, MG, JGG, DH, JG, AG, FLH, HH, MI, RK, BK, EGK, DK, PK, KK, DL, LM, CM, DM-R, LN, SO, CO, JNP, LP, LP, CP, GP, CP, AP, MR, CR, VS, IS, AS, SS, RS, PS, EMV, PV, LV, AV, JW, MW, MSZ, FZ, GL, VRY, MM, FH-G, MB, FA, HG, CW, AN, MT, DS, YM, KK, CS, VC, MZ, LVM, LB characterized the clinical and molecular features of the disease. All the authors edited or commented the manuscript.

Corresponding author

Correspondence to Camille Engel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Individuals were referred by clinical geneticists for genetic testing as part of routine clinical care. All patients enrolled and/or their legal representative have signed informed consent for use of data and/or photographs. This study has been performed in accordance with the Declaration of Helsinki.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engel, C., Valence, S., Delplancq, G. et al. BRAT1–related disorders: phenotypic spectrum and phenotype-genotype correlations from 97 patients. Eur J Hum Genet 31, 1023–1031 (2023). https://doi.org/10.1038/s41431-023-01410-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41431-023-01410-z

This article is cited by

Search

Quick links