Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

SMAD6 variants in nonsyndromic craniosynostosis

The Original Article was published on 03 February 2023

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Twigg SR, Wilkie AO. A genetic-pathophysiological framework for craniosynostosis. Am J Hum Genet. 2015;97:359–77. https://doi.org/10.1016/j.ajhg.2015.07.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Di Rocco FRM, Verlut I, Szathmari A, Aurélien Beuriat P, Chatron N, et al. Clinical interest of molecular study in cases of isolated midline craniosynostosis. Eur J Hum Genet. 2023. https://doi.org/10.1038/s41431-023-01295-y.

  3. Wu RT, Timberlake AT, Abraham PF, Gabrick KS, Lu X, Peck CJ, et al. SMAD6 genotype predicts neurodevelopment in nonsyndromic craniosynostosis. Plast Reconstr Surg. 2020;145:117e–25e. https://doi.org/10.1097/PRS.0000000000006319.

    Article  CAS  PubMed  Google Scholar 

  4. Timberlake AT, Persing JA. Genetics of nonsyndromic craniosynostosis. Plast Reconstr Surg. 2018;141:1508–16. https://doi.org/10.1097/PRS.0000000000004374.

    Article  CAS  PubMed  Google Scholar 

  5. Timberlake AT, Furey CG, Choi J, Nelson-Williams C, Yale Center for Genome Analysis, Loring E, et al. De novo mutations in inhibitors of Wnt, BMP, and Ras/ERK signaling pathways in non-syndromic midline craniosynostosis. Proc Natl Acad Sci USA 2017. https://doi.org/10.1073/pnas.1709255114.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Timberlake AT, Choi J, Zaidi S, Lu Q, Nelson-Williams C, Brooks ED, et al. Two locus inheritance of non-syndromic midline craniosynostosis via rare SMAD6 and common BMP2 alleles. Elife. 2016;5. https://doi.org/10.7554/eLife.20125.

  7. Calpena E, Cuellar A, Bala K, Swagemakers SMA, Koelling N, McGowan SJ, et al. SMAD6 variants in craniosynostosis: genotype and phenotype evaluation. Genet Med. 2020. https://doi.org/10.1038/s41436-020-0817-2.

  8. Timberlake AT, Kiziltug E, Jin SC, Nelson-Williams C, Loring E, Yale Center for Genome Analysis, et al. De novo mutations in the BMP signaling pathway in lambdoid craniosynostosis. Hum Genet. 2023;142:21–32. https://doi.org/10.1007/s00439-022-02477-2.

    Article  CAS  PubMed  Google Scholar 

  9. Dash S, Trainor PA. The development, patterning and evolution of neural crest cell differentiation into cartilage and bone. Bone. 2020;137:115409. https://doi.org/10.1016/j.bone.2020.115409.

    Article  CAS  PubMed  Google Scholar 

  10. Siismets EM, Hatch NE. Cranial neural crest cells and their role in the pathogenesis of craniofacial anomalies and coronal craniosynostosis. J Dev Biol. 2020;8. Epub 2020/09/13. https://doi.org/10.3390/jdb8030018.

  11. Komatsu Y, Yu PB, Kamiya N, Pan H, Fukuda T, Scott GJ, et al. Augmentation of Smad-dependent BMP signaling in neural crest cells causes craniosynostosis in mice. J Bone Min Res. 2013;28:1422–33. https://doi.org/10.1002/jbmr.1857.

    Article  CAS  Google Scholar 

  12. Justice CM, Yagnik G, Kim Y, Peter I, Jabs EW, Erazo M, et al. A genome-wide association study identifies susceptibility loci for nonsyndromic sagittal craniosynostosis near BMP2 and within BBS9. Nat Genet. 2012;44:1360–4. https://doi.org/10.1038/ng.2463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Justice CM, Kim J, Kim SD, Kim K, Yagnik G, Cuellar A, et al. A variant associated with sagittal nonsyndromic craniosynostosis alters the regulatory function of a non-coding element. Am J Med Genet A. 2017;173:2893–7. https://doi.org/10.1002/ajmg.a.38392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Komatsu Y, Mishina Y. An epistatic explanation. Elife. 2016;5. https://doi.org/10.7554/eLife.21162.

  15. Justice CM, Cuellar A, Bala K, Sabourin JA, Cunningham ML, Crawford K, et al. A genome-wide association study implicates the BMP7 locus as a risk factor for nonsyndromic metopic craniosynostosis. Hum Genet. 2020. https://doi.org/10.1007/s00439-020-02157-z.

  16. Yang J, Kitami M, Pan H, Nakamura MT, Zhang H, Liu F, et al. Augmented BMP signaling commits cranial neural crest cells to a chondrogenic fate by suppressing autophagic beta-catenin degradation. Sci Signal. 2021;14. https://doi.org/10.1126/scisignal.aaz9368.

Download references

Funding

No funding associated with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew T. Timberlake.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timberlake, A.T. SMAD6 variants in nonsyndromic craniosynostosis. Eur J Hum Genet 31, 611–612 (2023). https://doi.org/10.1038/s41431-023-01317-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41431-023-01317-9

Search

Quick links