Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functional analysis of PTEN variants of unknown significance from PHTS patients unveils complex patterns of PTEN biological activity in disease

Abstract

Heterozygous germline mutations in PTEN gene predispose to hamartomas and tumors in different tissues, as well as to neurodevelopmental disorders, and define at genetic level the PTEN Hamartoma Tumor Syndrome (PHTS). The major physiologic role of PTEN protein is the dephosphorylation of phosphatidylinositol (3,4,5)-trisphosphate (PIP3), counteracting the pro-oncogenic function of phosphatidylinositol 3-kinase (PI3K), and PTEN mutations in PHTS patients frequently abrogate PTEN PIP3 catalytic activity. PTEN also displays non-canonical PIP3-independent functions, but their involvement in PHTS pathogeny is less understood. We have previously identified and described, at clinical and genetic level, novel PTEN variants of unknown functional significance in PHTS patients. Here, we have performed an extensive functional characterization of these PTEN variants (c.77 C > T, p.(Thr26Ile), T26I; c.284 C > G, p.(Pro95Arg), P95R; c.529 T > A, p.(Tyr177Asn), Y177N; c.781 C > G, p.(Gln261Glu), Q261E; c.829 A > G, p.(Thr277Ala), T277A; and c.929 A > G, p.(Asp310Gly), D310G), including cell expression levels and protein stability, PIP3-phosphatase activity, and subcellular localization. In addition, caspase-3 cleavage analysis in cells has been assessed using a C2-domain caspase-3 cleavage-specific anti-PTEN antibody. We have found complex patterns of functional activity on PTEN variants, ranging from loss of PIP3-phosphatase activity, diminished protein expression and stability, and altered nuclear/cytoplasmic localization, to intact functional properties, when compared with PTEN wild type. Furthermore, we have found that PTEN cleavage at the C2-domain by the pro-apoptotic protease caspase-3 is diminished in specific PTEN PHTS variants. Our findings illustrate the multifaceted molecular features of pathogenic PTEN protein variants, which could account for the complexity in the genotype/phenotype manifestations of PHTS patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Depiction of PTEN 3D structure (accession ID5R) and localization of the amino acids targeted by mutations which were analysed in this study (Thr26, Pro95, Tyr177, Gln261, Thr277, and Asp310).
Fig. 2: Steady-state expression and stability of PTEN PHTS variants.
Fig. 3: PIP3-phosphatase functional activity of PTEN PHTS variants in cells.
Fig. 4: Subcellular localization of PTEN PHTS variants.
Fig. 5: Cleavage of PTEN PHTS variants at Asp301 as determined using the anti-PTEN SP227 mAb.

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available in the LOVD gene variant database (http://www.lovd.nl/3.0/home), with the following accession ID: 0000352584 (T26I), 0000878862 (P95R), 0000878883 (Y177N), 0000878885 (Q261E), 0000878886 (T277A), 0000878890 (D310G).

References

  1. Yehia L, Keel E, Eng C. The Clinical Spectrum of PTEN Mutations. Annu Rev Med. 2020;71:103–16.

    Article  CAS  PubMed  Google Scholar 

  2. Ngeow J, Eng C. PTEN in Hereditary and Sporadic Cancer. Cold Spring Harbor Perspect Med. 2020;1:a036087.

  3. Pulido R, Mingo J, Gaafar A, Nunes-Xavier CE, Luna S, Torices L, et al. Precise Immunodetection of PTEN Protein in Human Neoplasia. Cold Spring Harb Perspect Med. 2019;9:a036293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee YR, Chen M, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor: new modes and prospects. Nat Rev Mol cell Biol. 2018;19:547–62.

    Article  CAS  PubMed  Google Scholar 

  5. Pulido R. PTEN: a yin-yang master regulator protein in health and disease. Methods. 2015;77-78:3–10.

    Article  CAS  PubMed  Google Scholar 

  6. A Papa, PP Pandolfi. Phosphatase-independent functions of the tumor suppressor PTEN. In: Neel B, Tonks N, editors. Protein Tyrosine Phosphatases in Cancer. New York, NY: Springer; 2016;247–60.

  7. Bononi A, Pinton P. Study of PTEN subcellular localization. Methods. 2015;77-78:92–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Misra S, Ghosh G, Chowdhury SG, Karmakar P. Non-canonical function of nuclear PTEN and its implication on tumorigenesis. DNA Repair (Amst). 2021;107:103197.

    Article  CAS  PubMed  Google Scholar 

  9. Leslie NR, Kriplani N, Hermida MA, Alvarez-Garcia V, Wise HM. The PTEN protein: cellular localization and post-translational regulation. Biochemical Soc Trans. 2016;44:273–8.

    Article  CAS  Google Scholar 

  10. Sellars E, Gabra M, Salmena L. The Complex Landscape of PTEN mRNA Regulation. Cold Spring Harb Perspect Med. 2020;10:a036236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Torres J, Rodriguez J, Myers MP, Valiente M, Graves JD, Tonks NK, et al. Phosphorylation-regulated cleavage of the tumor suppressor PTEN by caspase-3: implications for the control of protein stability and PTEN-protein interactions. J Biol Chem. 2003;278:30652–60.

    Article  CAS  PubMed  Google Scholar 

  12. Gil A, Andrés-Pons A, Pulido R. Nuclear PTEN: a tale of many tails. Cell death Differ. 2007;14:395–9.

    Article  CAS  PubMed  Google Scholar 

  13. Singh M, Chaudhry P, Fabi F, Asselin E. Cisplatin-induced caspase activation mediates PTEN cleavage in ovarian cancer cells: a potential mechanism of chemoresistance. BMC Cancer. 2013;13:233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee JO, Yang H, Georgescu MM, Di Cristofano A, Maehama T, Shi Y, et al. Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell. 1999;99:323–34.

    Article  CAS  PubMed  Google Scholar 

  15. Fragoso R, Barata JT. Kinases, tails and more: Regulation of PTEN function by phosphorylation. Methods. 2014.

  16. Sotelo NS, Schepens JT, Valiente M, Hendriks WJ, Pulido R. PTEN-PDZ domain interactions: binding of PTEN to PDZ domains of PTPN13. Methods. 2015;77-78:147–56.

    Article  CAS  PubMed  Google Scholar 

  17. Wang K, Liu J, Li YL, Li JP, Zhang R. Ubiquitination/de-ubiquitination: A promising therapeutic target for PTEN reactivation in cancer. Biochim Biophys Acta Rev Cancer. 2022;1877:188723.

    Article  CAS  PubMed  Google Scholar 

  18. Matreyek KA, Starita LM, Stephany JJ, Martin B, Chiasson MA, Gray VE, et al. Multiplex assessment of protein variant abundance by massively parallel sequencing. Nat Genet. 2018;50:874–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mighell TL, Evans-Dutson S, O’Roak BJ. A Saturation Mutagenesis Approach to Understanding PTEN Lipid Phosphatase Activity and Genotype-Phenotype Relationships. Am J Hum Genet. 2018;102:943–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mingo J, Rodriguez-Escudero I, Luna S, Fernandez-Acero T, Amo L, Jonasson AR, et al. A pathogenic role for germline PTEN variants which accumulate into the nucleus. Eur J Hum Genet: EJHG. 2018;26:1180–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rodríguez-Escudero I, Oliver MD, Andrés-Pons A, Molina M, Cid VJ, Pulido R. A comprehensive functional analysis of PTEN mutations: implications in tumor- and autism-related syndromes. Hum Mol Genet. 2011;20:4132–42.

    Article  PubMed  Google Scholar 

  22. Spinelli L, Black FM, Berg JN, Eickholt BJ, Leslie NR. Functionally distinct groups of inherited PTEN mutations in autism and tumour syndromes. J Med Genet. 2015;52:128–34.

    Article  CAS  PubMed  Google Scholar 

  23. Post KL, Belmadani M, Ganguly P, Meili F, Dingwall R, McDiarmid TA, et al. Multi-model functionalization of disease-associated PTEN missense mutations identifies multiple molecular mechanisms underlying protein dysfunction. Nat Commun. 2020;11:2073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chao JT, Hollman R, Meyers WM, Meili F, Matreyek KA, Dean P, et al. A Premalignant Cell-Based Model for Functionalization and Classification of PTEN Variants. Cancer Res. 2020;80:2775–89.

    Article  CAS  PubMed  Google Scholar 

  25. Ganguly P, Madonsela L, Chao JT, Loewen CJR, O’Connor TP, Verheyen EM, et al. A scalable Drosophila assay for clinical interpretation of human PTEN variants in suppression of PI3K/AKT induced cellular proliferation. PLoS Genet. 2021;17:e1009774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smith IN, Thacker S, Seyfi M, Cheng F, Eng C. Conformational Dynamics and Allosteric Regulation Landscapes of Germline PTEN Mutations Associated with Autism Compared to Those Associated with Cancer. Am J Hum Genet. 2019;104:861–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cid VJ, Rodríguez-Escudero I, Andrés-Pons A, Romá-Mateo C, Gil A, den Hertog J, et al. Assessment of PTEN tumor suppressor activity in nonmammalian models: the year of the yeast. Oncogene. 2008;27:5431–42.

    Article  CAS  PubMed  Google Scholar 

  28. Leslie NR, Longy M. Inherited PTEN mutations and the prediction of phenotype. Semin Cell Developmental Biol. 2016;52:30–8.

    Article  CAS  Google Scholar 

  29. Pena-Couso L, Ercibengoa M, Mercadillo F, Gomez-Sanchez D, Inglada-Perez L, Santos M, et al. Considerations on diagnosis and surveillance measures of PTEN hamartoma tumor syndrome: clinical and genetic study in a series of Spanish patients. Orphanet J Rare Dis. 2022;17:85.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Andrés-Pons A, Rodríguez-Escudero I, Gil A, Blanco A, Vega A, Molina M, et al. In vivo functional analysis of the counterbalance of hyperactive phosphatidylinositol 3-kinase p110 catalytic oncoproteins by the tumor suppressor PTEN. Cancer Res. 2007;67:9731–9.

    Article  PubMed  Google Scholar 

  31. Gil A, Andrés-Pons A, Fernández E, Valiente M, Torres J, Cervera J, et al. Nuclear localization of PTEN by a Ran-dependent mechanism enhances apoptosis: Involvement of an N-terminal nuclear localization domain and multiple nuclear exclusion motifs. Mol Biol Cell. 2006;17:4002–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Andrés-Pons A, Gil A, Oliver MD, Sotelo NS, Pulido R. Cytoplasmic p27Kip1 counteracts the pro-apoptotic function of the open conformation of PTEN by retention and destabilization of PTEN outside of the nucleus. Cell Signal. 2012;24:577–87.

    Article  PubMed  Google Scholar 

  33. Mingo J, Erramuzpe A, Luna S, Aurtenetxe O, Amo L, Diez I, et al. One-Tube-Only Standardized Site-Directed Mutagenesis: An Alternative Approach to Generate Amino Acid Substitution Collections. PloS One. 2016;11:e0160972.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rodriguez-Escudero I, Fernandez-Acero T, Bravo I, Leslie NR, Pulido R, Molina M, et al. Yeast-based methods to assess PTEN phosphoinositide phosphatase activity in vivo. Methods. 2015;77-78:172–9.

    Article  CAS  PubMed  Google Scholar 

  35. Rodríguez-Escudero I, Roelants FM, Thorner J, Nombela C, Molina M, Cid VJ. Reconstitution of the mammalian PI3K/PTEN/Akt pathway in yeast. Biochemical J. 2005;390:613–23. Pt 2

    Article  Google Scholar 

  36. Nunes-Xavier CE, Pulido R. Global RT-PCR and RT-qPCR Analysis of the mRNA Expression of the Human PTPome. Methods Mol Biol. 2016;1447:25–37.

    Article  CAS  PubMed  Google Scholar 

  37. Andrés-Pons A, Valiente M, Torres J, Gil A, Roglá I, Ripoll F, et al. Functional definition of relevant epitopes on the tumor suppressor PTEN protein. Cancer Lett. 2005;223:303–12.

    Article  PubMed  Google Scholar 

  38. Sotelo NS, Valiente M, Gil A, Pulido R. A functional network of the tumor suppressors APC, hDlg, and PTEN, that relies on recognition of specific PDZ-domains. J Cell Biochem. 2012;113:2661–70.

    Article  CAS  PubMed  Google Scholar 

  39. Tolkacheva T, Boddapati M, Sanfiz A, Tsuchida K, Kimmelman AC, Chan AM. Regulation of PTEN binding to MAGI-2 by two putative phosphorylation sites at threonine 382 and 383. Cancer Res. 2001;61:4985–9.

    CAS  PubMed  Google Scholar 

  40. Torres J, Pulido R. The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus. Implications for PTEN stability to proteasome-mediated degradation. The. J Biol Chem. 2001;276:993–8.

    Article  CAS  PubMed  Google Scholar 

  41. Yang JM, Schiapparelli P, Nguyen HN, Igarashi A, Zhang Q, Abbadi S, et al. Characterization of PTEN mutations in brain cancer reveals that pten mono-ubiquitination promotes protein stability and nuclear localization. Oncogene. 2017;36:3673–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ho J, Cruise ES, Dowling RJO, Stambolic V. PTEN Nuclear Functions. Cold Spring Harb Perspect Med. 2020;10:a036079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gil A, Rodriguez-Escudero I, Stumpf M, Molina M, Cid VJ, Pulido R. A functional dissection of PTEN N-terminus: implications in PTEN subcellular targeting and tumor suppressor activity. PloS one. 2015;10:e0119287.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wong CW, Wang Y, Liu T, Li L, Cheung SKK, Or PM, et al. Autism-associated PTEN missense mutation leads to enhanced nuclear localization and neurite outgrowth in an induced pluripotent stem cell line. The. FEBS J. 2020;287:4848–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang H, Karikomi M, Naidu S, Rajmohan R, Caserta E, Chen HZ, et al. Allele-specific tumor spectrum in pten knockin mice. Proc Natl Acad Sci USA. 2010;107:5142–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guo Y, He J, Zhang H, Chen R, Li L, Liu X, et al. Linear ubiquitination of PTEN impairs its function to promote prostate cancer progression. Oncogene. 2022;41:4877–92.

    Article  CAS  PubMed  Google Scholar 

  47. Pearce W, Kessaris N, Leslie NR, Vanhaesebroeck B, Tibarewal P, Classen G, et al. Investigation of PTEN genotype-phenotype correlations in the PTEN hamartoma tumor syndrome (PHTS) using in vitro and in vivo approaches. Mol cancer Res: MCR. 2020;18:B22.

    Article  Google Scholar 

  48. Trotman LC, Wang X, Alimonti A, Chen Z, Teruya-Feldstein J, Yang H, et al. Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell 2007;128:141–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dong L, Li Y, Liu L, Meng X, Li S, Han D, et al. Smurf1 Suppression Enhances Temozolomide Chemosensitivity in Glioblastoma by Facilitating PTEN Nuclear Translocation. Cells. 2022;11:3302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Busa T, Milh M, Degardin N, Girard N, Sigaudy S, Longy M, et al. Clinical presentation of PTEN mutations in childhood in the absence of family history of Cowden syndrome. Eur J Paediatr Neurol: EJPN: Off J Eur Paediatr Neurol Soc. 2015;19:188–92.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Gustavo Pérez‐Nanclares and Ana Belén de la Hoz (Genetics-Genomics Core facility, Biocruces Bizkaia Health Research Institute) for their expert assistance with DNA sequencing., and Javier Díez Garcı́a (Microscopy core facility, Biocruces Bizkaia Health Research Institute) for expert microscopy technical support.

Funding

This work has been supported in part by grant BBH-19-001 (to RP) from PTEN Research Foundation (United Kingdom); grants SAF2016-79847-R (to RP and JIL), and PID2019-105342GB-I00 (to VJC and MM) from Ministerio de Economía y Competitividad (Spain and The European Regional Development Fund); and grant S2017/BMD‐3691(InGEMICS‐CM) from Comunidad de Madrid and European Structural and Investment Funds (to VJC and MM). LT has been the recipient of a predoctoral fellowship from Asociación Española Contra el Cáncer (AECC, Junta Provincial de Bizkaia, Spain). JM has been the recipient of a predoctoral fellowship (PRE_2014_1_285) from Gobierno Vasco, Departamento de Educación (Basque Country, Spain). CN-X is the recipient of a Miguel Servet Research Contract from Instituto de Salud Carlos III (grant number CP20/00008).

Author information

Authors and Affiliations

Authors

Contributions

LT, JM, IR-E, TF-A, and SL designed and performed experiments, and performed data analysis. CEN-X designed experiments, supervised the work and performed data analysis. JIL and MM supervised the work. FM, MC, and MU shared information and provided feedback. VJC and RP designed experiments, performed data analysis and wrote the manuscript. All authors revised the manuscript.

Corresponding author

Correspondence to Rafael Pulido.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torices, L., Mingo, J., Rodríguez-Escudero, I. et al. Functional analysis of PTEN variants of unknown significance from PHTS patients unveils complex patterns of PTEN biological activity in disease. Eur J Hum Genet 31, 568–577 (2023). https://doi.org/10.1038/s41431-022-01265-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41431-022-01265-w

Search

Quick links