Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nutrition during the early life cycle

Association of polymorphisms of FOLR1 gene and FOLR2 gene and maternal folic acid supplementation with risk of ventricular septal defect: a case-control study

Abstract

Objectives

It was the first time to examine the role of maternal polymorphisms of FOLR1 gene and FOLR2 gene, as well as their interactions with maternal folic acid supplementation (FAS), in the risk of ventricular septal defect (VSD).

Methods

A case-control study was conducted with 385 mothers of VSD infants and 652 controls. The exposures of interest were FAS and FOLR1 gene and FOLR2 gene polymorphisms. The logistic regression model was used for accessing the strength of association.

Results

After controlling for the potential confounders, women who did not utilize folic acid had a substantially higher risk of VSD (aOR = 2.25; 95% CI: 1.48 to 3.43), compared to those who did. We also observed genetic polymorphisms of FOLR1 gene at rs2071010 (GA vs. GG: aOR = 0.63, 95%CI: 0.45 to 0.88) and rs11235462 (AA vs. TT: aOR = 0.53, 95%CI: 0.33 to 0.84), as well as FOLR2 gene at rs651646 (AA vs. TT: aOR = 0.46, 95%CI: 0.30 to 0.70), rs2298444 (CC vs. TT: aOR = 0.58, 95%CI: 0.36 to 0.91) and rs514933 (TC vs. TT: aOR = 0.57, 95%CI: 0.41 to 0.78) were associated with a lower risk of VSD. Furthermore, there was a statistically significant interaction between maternal FAS and genetic polymorphisms at rs514933 on the risk of VSD (FDR_P = 0.015).

Conclusions

The maternal genetic polymorphisms of the FOLR1 gene and FOLR2 gene, as well as FAS and their interactions, were shown to be significantly associated with the risk of VSD in offspring.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Zhao L, Chen L, Yang T, Wang T, Zhang S, Chen L, et al. Birth prevalence of congenital heart disease in china, 1980-2019: A systematic review and meta-analysis of 617 studies. Eur J Epidemiol. 2020;35:631–42.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhang S, Liu X, Yang T, Wang T, Chen L, Qin J. Association of maternal dietary habits and ADIPOQ gene polymorphisms with the risk of congenital heart defects in offspring: a hospital-based case-control study. Eur J Clin Nutr. 2021. https://doi.org/10.1038/s41430-021-00969-4.

  3. Botto LD, Correa A, Erickson JD. Racial and temporal variations in the prevalence of heart defects. Pediatrics. 2001;68:942–942.

    Google Scholar 

  4. Zhu H, Kartiko S, Finnell RH. Importance of gene-environment interactions in the etiology of selected birth defects. Clin Genet. 2009;75:409–23.

    Article  CAS  PubMed  Google Scholar 

  5. Bruneau BG. The developmental genetics of congenital heart disease. Nature. 2008;451:943–8.

    Article  CAS  PubMed  Google Scholar 

  6. Goldmuntz E, Woyciechowski S, Renstrom D, Lupo PJ, Mitchell LE. Variants of folate metabolism genes and the risk of conotruncal cardiac defects. Circ Cardiovasc Genet. 2008;1:126–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rosenquist TH. Folate, homocysteine and the cardiac neural crest. Dev Dyn. 2013;242:201–18.

    Article  CAS  PubMed  Google Scholar 

  8. Taparia S, Gelineau-van Waes J, Rosenquist TH, Finnell RH. Importance of folate-homocysteine homeostasis during early embryonic development. Clin Chem Lab Med. 2007;45:1717–27.

    Article  CAS  PubMed  Google Scholar 

  9. Botto LD, Lin AE, Riehle-Colarusso T, Malik S, Correa A. Seeking causes: classifying and evaluating congenital heart defects in etiologic studies. Birth Defects Res A Clin Mol Teratol. 2007;79:714–27.

    Article  CAS  PubMed  Google Scholar 

  10. Morikawa Y, Cserjesi P. Cardiac neural crest expression of hand2 regulates outflow and second heart field development. Circ Res. 2008;103:1422–9.

    Article  CAS  PubMed  Google Scholar 

  11. Chin AJ, Saint-Jeannet JP, Lo CW. How insights from cardiovascular developmental biology have impacted the care of infants and children with congenital heart disease. Mech Dev. 2012;129:75–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Keyte A, Hutson MR. The neural crest in cardiac congenital anomalies. Differentiation. 2012;84:25–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Øyen N, Olsen SF, Basit S, Leirgul E, Strøm M, Carstensen L, et al. Association between maternal folic acid supplementation and congenital heart defects in offspring in birth cohorts from denmark and norway. J Am Heart Assoc. 2019;8:e011615.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Findley TO, Tenpenny JC, O’Byrne MR, Morrison AC, Hixson JE, Northrup H, et al. Mutations in folate transporter genes and risk for human myelomeningocele. Am J Med Genet A. 2017;173:2973–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Saitsu H. Folate receptors and neural tube closure. Congenit Anom. 2017;57:130–3.

    Article  CAS  Google Scholar 

  16. Piedrahita JA, Oetama B, Bennett GD, van Waes J, Kamen BA, Richardson J, et al. Mice lacking the folic acid-binding protein folbp1 are defective in early embryonic development. Nat Genet. 1999;23:228–32.

    Article  CAS  PubMed  Google Scholar 

  17. Chen C, Ke J, Zhou XE, Yi W, Brunzelle JS, Li J, et al. Structural basis for molecular recognition of folic acid by folate receptors. Nature. 2013;500:486–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Spiegelstein O, Mitchell LE, Merriweather MY, Wicker NJ, Zhang Q, Lammer EJ, et al. Embryonic development of folate binding protein-1 (folbp1) knockout mice: Effects of the chemical form, dose, and timing of maternal folate supplementation. Dev Dyn. 2004;231:221–31.

    Article  CAS  PubMed  Google Scholar 

  19. Saitsu H, Ishibashi M, Nakano H, Shiota K. Spatial and temporal expression of folate-binding protein 1 (fbp1) is closely associated with anterior neural tube closure in mice. Dev Dyn. 2003;226:112–7.

    Article  CAS  PubMed  Google Scholar 

  20. O’Leary VB, Mills JL, Kirke PN, Parle-McDermott A, Swanson DA, Weiler A, et al. Analysis of the human folate receptor beta gene for an association with neural tube defects. Mol Genet Metab. 2003;79:129–33.

    Article  PubMed  CAS  Google Scholar 

  21. Boot MJ, Steegers-Theunissen RP, Poelmann RE, Van Iperen L, Lindemans J. Gittenberger-de Groot AC. Folic acid and homocysteine affect neural crest and neuroepithelial cell outgrowth and differentiation in vitro. Dev Dyn. 2003;227:301–8.

    Article  CAS  PubMed  Google Scholar 

  22. Rosenquist TH, Chaudoin T, Finnell RH, Bennett GD. High-affinity folate receptor in cardiac neural crest migration: A gene knockdown model using sirna. Dev Dyn. 2010;239:1136–44.

    Article  CAS  PubMed  Google Scholar 

  23. Zhu H, Wlodarczyk BJ, Scott M, Yu W, Merriweather M, Gelineau-van Waes J, et al. Cardiovascular abnormalities in folr1 knockout mice and folate rescue. Birth Defects Res A Clin Mol Teratol. 2007;79:257–68.

    Article  CAS  PubMed  Google Scholar 

  24. Zhu H, Cabrera RM, Wlodarczyk BJ, Bozinov D, Wang D, Schwartz RJ, et al. Differentially expressed genes in embryonic cardiac tissues of mice lacking folr1 gene activity. BMC Dev Biol. 2007;7:128.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Antony AC. In utero physiology: Role of folic acid in nutrient delivery and fetal development. Am J Clin Nutr. 2007;85:598s–603s.

    Article  CAS  PubMed  Google Scholar 

  26. Boyles AL, Billups AV, Deak KL, Siegel DG, Mehltretter L, Slifer SH, et al. Neural tube defects and folate pathway genes: family-based association tests of gene-gene and gene-environment interactions. Environ Health Perspect. 2006;114:1547–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. O’Byrne MR, Au KS, Morrison AC, Lin JI, Fletcher JM, Ostermaier KK, et al. Association of folate receptor (folr1, folr2, folr3) and reduced folate carrier (slc19a1) genes with meningomyelocele. Birth Defects Res A Clin Mol Teratol. 2010;88:689–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Qu Y, Lin S, Zhuang J, Bloom MS, Smith M, Nie Z, et al. First-trimester maternal folic acid supplementation reduced risks of severe and most congenital heart diseases in offspring: a large case-control study. J Am Heart Assoc. 2020;9:e015652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Leirgul E, Gildestad T, Nilsen RM, Fomina T, Brodwall K, Greve G, et al. Periconceptional folic acid supplementation and infant risk of congenital heart defects in norway 1999-2009. Paediatr Perinat Epidemiol. 2015;29:391–400.

    Article  PubMed  Google Scholar 

  30. Li Y, Diao J, Li J, Luo L, Zhao L, Zhang S, et al. Association of maternal dietary intakes and cbs gene polymorphisms with congenital heart disease in offspring. Int J Cardiol. 2021;322:121–8.

    Article  PubMed  Google Scholar 

  31. Zheng G, Ng HKT. Genetic model selection in two-phase analysis for case-control association studies. Biostatistics. 2008;9:391–9.

    Article  PubMed  Google Scholar 

  32. Andersson T, Alfredsson L, Källberg H, Zdravkovic S, Ahlbom A. Calculating measures of biological interaction. Eur J Epidemiol. 2005;20:575–9.

    Article  PubMed  Google Scholar 

  33. Shaw GM, O’Malley CD, Wasserman CR, Tolarova MM, Lammer EJ. Maternal periconceptional use of multivitamins and reduced risk for conotruncal heart defects and limb deficiencies among offspring. Am J Med Genet. 1995;59:536–45.

    Article  CAS  PubMed  Google Scholar 

  34. Czeizel AE. Prevention of congenital abnormalities by periconceptional multivitamin supplementation. BMJ. 1993;306:1645–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Csáky-Szunyogh M, Vereczkey A, Kósa Z, Gerencsér B, Czeizel AE. Risk and protective factors in the origin of conotruncal defects of heart-a population-based case-control study. Am J Med Genet A. 2013;161a:2444–52.

    PubMed  Google Scholar 

  36. Jiang S, Wang J, Duan Y, Pang X, Bi Y, Zhang H, et al. Folic acid status and associated factors for pregnant chinese women - china, 2015. China CDC Wkly. 2021;3:226–31.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Li X, Li S, Mu D, Liu Z, Li Y, Lin Y, et al. The association between periconceptional folic acid supplementation and congenital heart defects: A case-control study in china. Prev Med. 2013;56:385–9.

    Article  PubMed  Google Scholar 

  38. Wang D, Jin L, Zhang J, Meng W, Ren A, Jin L. Maternal periconceptional folic acid supplementation and risk for fetal congenital heart defects. J Pediatr. 2022;240:72–78.

    Article  CAS  PubMed  Google Scholar 

  39. Mao B, Qiu J, Zhao N, Shao Y, Dai W, He X, et al. Maternal folic acid supplementation and dietary folate intake and congenital heart defects. PLoS One. 2017;12:e0187996.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Xu A, Cao X, Lu Y, Li H, Zhu Q, Chen X, et al. A meta-analysis of the relationship between maternal folic acid supplementation and the risk of congenital heart defects. Int Heart J. 2016;57:725–8.

    Article  CAS  PubMed  Google Scholar 

  41. Shaw GM, Lu W, Zhu H, Yang W, Briggs FB, Carmichael SL, et al. 118 snps of folate-related genes and risks of spina bifida and conotruncal heart defects. BMC Med Genet. 2009;10:49.

    Article  PubMed  PubMed Central  Google Scholar 

  42. RP K, T S, B S, T MK, A J. Lrp2 gene variants and their haplotypes strongly influence the risk of developing neural tube defects in the fetus: A family-triad study from south india. Metab Brain Dis. 2018;33:1343–52.

    Article  CAS  Google Scholar 

  43. Solanky N, Requena Jimenez A, D’Souza SW, Sibley CP, Glazier JD. Expression of folate transporters in human placenta and implications for homocysteine metabolism. Placenta. 2010;31:134–43.

    Article  CAS  PubMed  Google Scholar 

  44. Prasad PD, Ramamoorthy S, Moe AJ, Smith CH, Leibach FH, Ganapathy V. Selective expression of the high-affinity isoform of the folate receptor (fr-alpha) in the human placental syncytiotrophoblast and choriocarcinoma cells. Biochim Biophys Acta. 1994;1223:71–75.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the editors and reviewers for their suggestions and all colleagues working in Maternal and Child Health Promotion and Birth Defect Prevention Group.

Funding

This study was supported by the Project Funded by National Natural Science Foundation Program of China (82073653 and 81803313), Hunan Provincial Key Research and Development Program (2018SK2063 and 2018SK2062), Hunan Provincial Science and Technology Talent Support Project (2020TJ-N07), Natural Science Foundation of Hunan Province (2018JJ2551), Open Project from NHC Key Laboratory of Birth Defect for Research and Prevention (KF2020006), and The 68th General Program Supported by China Postdoctoral Science Foundation (2020M682644).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: PZ, JBQ, XLS and JHW. Performed the experiments: MTS and YPL. Analyzed the data and statistical analyses: JS and MTS. Contributed reagents/material/analysis tools: JS, YPL and MTS. Wrote the main manuscript text: XLS and PZ. Reference collection and data management: JBQ and XLS. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Ping Zhu or Jiabi Qin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Wei, J., Shu, J. et al. Association of polymorphisms of FOLR1 gene and FOLR2 gene and maternal folic acid supplementation with risk of ventricular septal defect: a case-control study. Eur J Clin Nutr 76, 1273–1280 (2022). https://doi.org/10.1038/s41430-022-01110-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-022-01110-9

Search

Quick links