Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nutrition and Health (including climate and ecological aspects)

Causal relationship between gut microbiota and serum vitamin D: evidence from genetic correlation and Mendelian randomization study

Abstract

Background

The gastrointestinal microbiota is emerging as an important mediator in intestinal metabolism, such as vitamin D absorption.

Methods

To elucidate the causality of microbiota and vitamin D, we used linkage disequilibrium score (LDSC) regression and two-sample Mendelian randomization (MR) methods with largest genome-wide association study (GWAS) summary statistics to identify specific taxa that are linked to serum 25-hydroxyvitamin D (25(OH)D).

Results

We found that Ruminiclostridium9 was significantly genetically correlated with 25(OH)D at nominal significance (rg = 0.43, P = 0.04). Applying the inverse variance weighted (IVW) method, we identified that doubling the genetic liability of abundance of Erysipelotrichia, Erysipelotrichaceae and Erysipelotrichales reduced the concentration of 25(OH)D by 0.06 standard deviation (SD) (βIVW = −0.06, s.e. = 0.01, P = 1.48 × 10−6, PFDR = 1.93 × 10−4) and, in turn, one SD increment in genetically determined serum 25(OH)D caused a 0.16 SD decrease in the relative abundance of PhascolarctobacteriumIVW = −0.16, s.e. = 0.04, P = 2.48 × 10−4, PFDR = 0.02) after removing pleiotropic instruments and outliers. Moreover, four MR methods were also used to evaluate causality, the results of which supported these findings. Leave-one-out analyses showed that the results were robust with regard to alterations in the single nucleotide polymorphisms (SNPs) we selected.

Conclusions

In conclusion, our results support the hypothesis that the gut microbiota mediates the absorption of serum vitamin D supplementation and interacts with it closely. These microbiota are potential therapeutic targets for promoting serum vitamin D homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diagrammatic description of MR analysis in this study.
Fig. 2: Mendelian randomization study rationale.
Fig. 3: Mendelian randomization estimate using multiple single nucleotide polymorphisms.

Similar content being viewed by others

Data availability

Data used in this study are publicly available at https://cnsgenomics.com/data/revez_20/ and https://mibiogen.gcc.rug.nl/.

References

  1. Mondot S, de Wouters T, Dore J, Lepage P. The human gut microbiome and its dysfunctions. Dig Dis. 2013;31:278–85.

    Article  PubMed  Google Scholar 

  2. Busnelli M, Manzini S, Chiesa G. The gut microbiota affects host pathophysiology as an endocrine organ: a focus on cardiovascular disease. Nutrients. 2019;12:79.

    Article  PubMed Central  CAS  Google Scholar 

  3. Tang WH, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ Res. 2017;120:1183–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA. 2005;102:11070–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kreznar JH, Keller MP, Traeger LL, Rabaglia ME, Schueler KL, Stapleton DS, et al. Host genotype and gut microbiome modulate insulin secretion and diet-induced metabolic phenotypes. Cell Rep. 2017;18:1739–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5:e9085.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Karlsson FH, Tremaroli V, Nookaew I, Bergstrom G, Behre CJ, Fagerberg B, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498:99–103.

    Article  CAS  PubMed  Google Scholar 

  8. Kootte RS, Levin E, Salojarvi J, Smits LP, Hartstra AV, Udayappan SD, et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab. 2017;26:611–9. e6

    Article  CAS  PubMed  Google Scholar 

  9. Zhang X, Shen D, Fang Z, Jie Z, Qiu X, Zhang C, et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One. 2013;8:e71108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kurilshikov A, Medina-Gomez C, Bacigalupe R, Radjabzadeh D, Wang J, Demirkan A, et al. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat Genet. 2021;53:156–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Riccio P, Rossano R. Diet, gut microbiota, and vitamins D + A in multiple sclerosis. Neurotherapeutics. 2018;15:75–91.

    Article  CAS  PubMed  Google Scholar 

  12. Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry. 2016;21:786–96.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Y, Kang C, Wang XL, Zhou M, Chen MT, Zhu XH, et al. Dietary factors modulate colonic tumorigenesis through the interaction of gut microbiota and host chloride channels. Mol Nutr Food Res. 2018;62:1700554.

    Article  CAS  Google Scholar 

  14. Huang R, Xiang J, Zhou P. Vitamin D, gut microbiota, and radiation-related resistance: a love-hate triangle. J Exp Clin Cancer Res. 2019;38:493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:105–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Luthold RV, Fernandes GR, Franco-de-Moraes AC, Folchetti LG, Ferreira SR. Gut microbiota interactions with the immunomodulatory role of vitamin D in normal individuals. Metabolism. 2017;69:76–86.

    Article  CAS  PubMed  Google Scholar 

  17. Thomas RL, Jiang L, Adams JS, Xu ZZ, Shen J, Janssen S, et al. Vitamin D metabolites and the gut microbiome in older men. Nat Commun. 2020;11:5997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Seura T, Yoshino Y, Fukuwatari T. The relationship between habitual dietary intake and gut microbiota in young Japanese women. J Nutr Sci Vitaminol. 2017;63:396–404.

    Article  CAS  PubMed  Google Scholar 

  19. Waterhouse M, Hope B, Krause L, Morrison M, Protani MM, Zakrzewski M, et al. Vitamin D and the gut microbiome: a systematic review of in vivo studies. Eur J Nutr. 2019;58:2895–910.

    Article  CAS  PubMed  Google Scholar 

  20. Wang J, Thingholm LB, Skieceviciene J, Rausch P, Kummen M, Hov JR, et al. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat Genet. 2016;48:1396–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jin D, Wu S, Zhang YG, Lu R, Xia Y, Dong H, et al. Lack of vitamin D receptor causes dysbiosis and changes the functions of the murine intestinal microbiome. Clin Ther. 2015;37:996–1009. e7

    Article  CAS  PubMed  Google Scholar 

  22. Naderpoor N, Mousa A, Fernanda Gomez Arango L, Barrett HL, Dekker Nitert M, de Courten B. Effect of vitamin D supplementation on faecal microbiota: a randomised clinical trial. Nutrients. 2019;11:2888.

  23. Jones ML, Martoni CJ, Prakash S. Oral supplementation with probiotic L. reuteri NCIMB 30242 increases mean circulating 25-hydroxyvitamin D: a post hoc analysis of a randomized controlled trial. J Clin Endocrinol Metab. 2013;98:2944–51.

    Article  CAS  PubMed  Google Scholar 

  24. Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh PR, et al. An atlas of genetic correlations across human diseases and traits. Nat Genet. 2015;47:1236–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Smith GD, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32:1–22.

    Article  PubMed  Google Scholar 

  26. Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50:693–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dastani Z, Hivert MF, Timpson N, Perry JR, Yuan X, Scott RA, et al. Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: a multi-ethnic meta-analysis of 45,891 individuals. PLoS Genet. 2012;8:e1002607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol. 2017;32:377–89.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pierce BL, Burgess S. Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. Am J Epidemiol. 2013;178:1177–84.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bowden J, Davey, Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40:304–14.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Revez JA, Lin T, Qiao Z, Xue A, Holtz Y, Zhu Z, et al. Genome-wide association study identifies 143 loci associated with 25 hydroxyvitamin D concentration. Nat Commun. 2020;11:1647.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016;48:1279–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brion MJ, Shakhbazov K, Visscher PM. Calculating statistical power in Mendelian randomization studies. Int J Epidemiol. 2013;42:1497–501.

    Article  PubMed  Google Scholar 

  34. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27:1133–63.

    Article  PubMed  Google Scholar 

  35. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife. 2018;7:e34408.

  36. Zuo K, Li J, Xu Q, Hu C, Gao Y, Chen M, et al. Dysbiotic gut microbes may contribute to hypertension by limiting vitamin D production. Clin Cardiol. 2019;42:710–9.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Xiao L, Chen B, Feng D, Yang T, Li T, Chen J. TLR4 may be involved in the regulation of colonic mucosal microbiota by vitamin A. Front Microbiol. 2019;10:268.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gutierrez-Calabres E, Ortega-Hernandez A, Modrego J, Gomez-Gordo R, Caro-Vadillo A, Rodriguez-Bobada C, et al. Gut microbiota profile identifies transition from compensated cardiac hypertrophy to heart failure in hypertensive rats. Hypertension. 2020;76:1545–54.

    Article  CAS  PubMed  Google Scholar 

  39. Yang Q, Liang Q, Balakrishnan B, Belobrajdic DP, Feng QJ, Zhang W. Role of dietary nutrients in the modulation of gut microbiota: a narrative review. Nutrients. 2020;12:381.

  40. Sun J. Dietary vitamin D, vitamin D receptor, and microbiome. Curr Opin Clin Nutr Metab Care. 2018;21:471–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Palacios-Gonzalez B, Ramirez-Salazar EG, Rivera-Paredez B, Quiterio M, Flores YN, Macias-Kauffer L, et al. A multi-omic analysis for low bone mineral density in postmenopausal women suggests a RELATIONSHIP between diet, metabolites, and microbiota. Microorganisms. 2020;8:1630.

  42. Kanhere M, He J, Chassaing B, Ziegler TR, Alvarez JA, Ivie EA, et al. Bolus weekly vitamin D3 supplementation impacts gut and airway microbiota in adults with cystic fibrosis: a double-blind, randomized, placebo-controlled clinical trial. J Clin Endocrinol Metab. 2018;103:564–74.

    Article  PubMed  Google Scholar 

  43. Wu S, Zhang YG, Lu R, Xia Y, Zhou D, Petrof EO, et al. Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis. Gut. 2015;64:1082–94.

    Article  CAS  PubMed  Google Scholar 

  44. Wu F, Guo X, Zhang J, Zhang M, Ou Z, Peng Y. Phascolarctobacterium faecium abundant colonization in human gastrointestinal tract. Exp Ther Med. 2017;14:3122–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tsiglopoulos J, Pearson N, Mifsud N, Allott K, O’Donoghue B. The association between vitamin D and symptom domains in psychotic disorders: a systematic review. Schizophr Res. 2021;237:79–92.

    Article  PubMed  Google Scholar 

  46. Iglesias-Vazquez L, Van Ginkel Riba G, Arija V, Canals J. Composition of gut microbiota in children with autism spectrum disorder: a systematic review and meta-analysis. Nutrients. 2020;12:792.

    Article  PubMed Central  Google Scholar 

  47. Lin H, Huang Y, Tian T, Wang P, Li Y. Propionate promotes vitamin D receptor expression via yes-associated protein in rats with short bowel syndrome. Biochem Biophys Res Commun. 2020;523:645–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We hereby express our thanks to consortia (UKB, SUNLIGHT, MiBioGen) for kindly releasing GWAS summary data. The study was funded by National Natural Science Foundation of China (81801970 to GTL, 81200596 to YW), Research Foundation from Jiangsu Commission of Health (Z2017018 to YW), and National Natural Science Foundation of Yangzhou (No. YZ2018091 to XNL).

Author information

Authors and Affiliations

Authors

Contributions

PJJ, WY, and YXL conceived the research questions and designed the analysis; YXL and ZQT analyzed data; ZL, PYF, LXN and LGT guided and provided feedback on the analysis and interpretation of results; YXL and XXJ wrote the paper. All authors critically reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Jiajia Pan or Ying Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This study was exempt from ethical approval because all data were anonymous and were based on results from previous publications.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Zhu, Q., Zhang, L. et al. Causal relationship between gut microbiota and serum vitamin D: evidence from genetic correlation and Mendelian randomization study. Eur J Clin Nutr 76, 1017–1023 (2022). https://doi.org/10.1038/s41430-021-01065-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-021-01065-3

This article is cited by

Search

Quick links