Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The effect of tobacco smoking during pregnancy and breastfeeding on human milk composition—a systematic review

Abstract

Tobacco smoking is still a widespread habit in pregnant and breastfeeding women. While the role of these risk factors on neonatal outcomes has been deeply studied, their effect on human milk composition is still not completely clear. This study aimed to report the most up to date evidence about the alteration of breast milk composition of smoking breastfeeding mothers compared to non-smoking ones. We performed a systematic review by searching PubMed, Embase, and Cochrane Library databases. Evaluated data were extracted and critically analyzed by two independent authors. PRISMA guidelines were applied, and the risk of bias was assessed (ROBINS), as was the methodological quality of the included studies (GRADE). After applying the inclusion criteria, we included 20 studies assessed as medium or high quality. In all the studies, we analyzed data regarding 1769 mothers (398 smokers and 971 nonsmokers). Smoking was associated with a lower content of lipids, calories, and proteins. Moreover, it was characterized by decreased antioxidant properties and an altered immune status. Smoking during pregnancy and breastfeeding is significantly associated with an alteration of milk metabolic properties. Further studies are needed to investigate how these changes can alter newborns’ development and outcomes and which molecular patterns are involved.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: PRISMA flowchart.

References

  1. 1.

    Slater L. Substance use in pregnancy. Pract Midwife. 2015;18:10–13.

    PubMed  Google Scholar 

  2. 2.

    EURO-PERISTAT. European Perinatal Health Report. 2015. http://www.europeristat.com.

  3. 3.

    Ashford KB, Hahn E, Hall L, Rayens MK, Noland M. Postpartum smoking relapse and secondhand smoke. Public Health Rep. 2009;124:515–26.

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Scott-Goodwin AC, Puerto M, Moreno I. Toxic effects of prenatal exposure to alcohol, tobacco and other drugs. Reprod Toxicol. 2016;61:120–30.

  5. 5.

    Caputo C, Wood E, Jabbour L. Impact of fetal alcohol exposure on body systems: a systematic review. Birth Defects Res Part C—Embryo Today Rev. 2016;108:174–80.

    CAS  Google Scholar 

  6. 6.

    Abraham M, Alramadhan S, Iniguez C, Duijts L, Jaddoe VWV, Den Dekker HT, et al. A systematic review of maternal smoking during pregnancy and fetal measurements with meta-analysis. PLoS ONE. 2017;12:e0170946.

  7. 7.

    WHO. Exclusive breastfeeding for 6 months best for babies everywhere. 2011.

  8. 8.

    Andreas NJ, Kampmann B, Mehring Le-Doare K. Human breast milk: a review on its composition and bioactivity. Early Hum Dev. 2015;91:629–35.

    CAS  PubMed  Google Scholar 

  9. 9.

    Zimmermann P, Curtis N. Breast milk microbiota: a complex microbiome with multiple impacts and conditioning factors. J Infect. 2020;81:17–47.

  10. 10.

    Napierala M, Mazela J, Merritt TA, Florek E. Tobacco smoking and breastfeeding: effect on the lactation process, breast milk composition and infant development. a critical review. Environ Res. 2016;151:321–38.

    CAS  PubMed  Google Scholar 

  11. 11.

    Napierala M, Merritt TA, Miechowicz I, Mielnik K, Mazela J, Florek E. The effect of maternal tobacco smoking and second-hand tobacco smoke exposure on human milk oxidant-antioxidant status. Environ Res. 2019;170:110–21.

    CAS  PubMed  Google Scholar 

  12. 12.

    Liberati A, Altman Douglas G, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Richardson WS, Wilson MC, Nishikawa J, Hayward RS. The well-built clinical question: a key to evidence-based decisions. ACP J Club. 1995;123:A12–3.

  14. 14.

    Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919.

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Schünemann H, Brożek J, Guyatt G, Oxman A. Handbook for grading the quality of evidence and the strength of recommendations using the GRADE approach. BMJ. 2013;332:1089–92.

    Google Scholar 

  16. 16.

    Hascoët JM, Chauvin M, Pierret C, Skweres S, Van Egroo LD, Rougé C, et al. Impact of maternal nutrition and perinatal factors on breast milk composition after premature delivery. Nutrients. 2019;11:7–14.

    Google Scholar 

  17. 17.

    Mello-Neto J, Rondó PHC, Morgano MA, Oshiiwa M, Santos ML, Oliveira JM. Iron concentrations in breast milk and selected maternal factors of human milk bank donors. J Hum Lact. 2010;26:175–9.

    PubMed  Google Scholar 

  18. 18.

    Agostoni C, Marangoni F, Grandi F, Lammardo AM, Giovannini M, Riva E, et al. Earlier smoking habits are associated with higher serum lipids and lower milk fat and polyunsaturated fatty acid content in the first 6 months of lactation. Eur J Clin Nutr. 2003;57:1466–72.

    CAS  PubMed  Google Scholar 

  19. 19.

    Ermis B, Yildirim A, Örs R, Tastekin A, Ozkan B, Akcay F. Influence of smoking on serum and milk malondialdehyde, superoxide dismutase, glutathione peroxidase, and antioxidant potential levels in mothers at the postpartum seventh day. Biol Trace Elem Res. 2005;105:27–36.

    CAS  PubMed  Google Scholar 

  20. 20.

    Bachour P, Yafawi R, Jaber F, Choueiri E, Abdel-Razzak Z. Effects of smoking, mother’s age, body mass index, and parity number on lipid, protein, and secretory immunoglobulin a concentrations of human milk. Breastfeed Med. 2012;7:179–88.

    PubMed  Google Scholar 

  21. 21.

    Ozkan B, Ermis B, Tastekin A, Doneray H, Yildirim A, Ors R. Effect of smoking on neonatal and maternal serum and breast milk leptin levels. Endocr Res. 2005;31:177–83.

    CAS  PubMed  Google Scholar 

  22. 22.

    Karatas F. An investigation of orotic acid levels in the breastmilk of smoking and non-smoking mothers. Eur J Clin Nutr. 2002;56:958–60.

    CAS  PubMed  Google Scholar 

  23. 23.

    Szlagatys-Sidorkiewicz A, Zagierski M, Łuczak G, MacUr K, Ba̧czek T, Kamińska B. Maternal smoking does not influence vitamin A and e concentrations in mature breastmilk. Breastfeed Med. 2012;7:285–9.

    PubMed  Google Scholar 

  24. 24.

    Orhon FS, Ulukol B, Kahya D, Cengiz B, Başkan S, Tezcan S. The influence of maternal smoking on maternal and newborn oxidant and antioxidant status. Eur J Pediatr. 2009;168:975–81.

    CAS  PubMed  Google Scholar 

  25. 25.

    Pişkin IE, Karavar HN, Arasli M, Ermiş B. Effect of maternal smoking on colostrum and breast milk cytokines. Eur Cytokine Netw. 2012;23:187–90.

    Google Scholar 

  26. 26.

    Szlagatys-Sidorkiewicz A, Martysiak-Zurowska D, Krzykowski G, Zagierski M, Kamińska B. Maternal smoking modulates fatty acid profile of breast milk. Acta Paediatr Int J Paediatr. 2013;102:353–9.

    Google Scholar 

  27. 27.

    Zanardo V, Nicolussi S, Cavallin S, Trevisanuto D, Barbato A, Faggian D, et al. Effect of maternal smoking on breast milk interleukin-1α, β-endorphin, and leptin concentrations. Environ Health Perspect. 2005;113:1410–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Burch J, Karmaus W, Gangur V, Soto-Ramírez N, Yousefi M, Goetzl LM. Pre- and perinatal characteristics and breast milk immune markers. Pediatr Res. 2013;74:615–21.

    CAS  PubMed  Google Scholar 

  29. 29.

    Burianova I, Bronsky J, Pavlikova M, Janota J, Maly J. Maternal body mass index, parity and smoking are associated with human milk macronutrient content after preterm delivery. Early Hum Dev. 2019;137:104832.

    CAS  PubMed  Google Scholar 

  30. 30.

    Groer M, Davis M, Steele K. Associations between human milk SIgA and maternal immune, infectious, endocrine, and stress variables. J Hum Lact. 2004;20:153–8.

    PubMed  Google Scholar 

  31. 31.

    Kondo N, Suda Y, Nakao A, Oh-Oka K, Suzuki K, Ishimaru K, et al. Maternal psychosocial factors determining the concentrations of transforming growth factor-beta in breast milk. Pediatr Allergy Immunol. 2011;22:853–61.

    PubMed  Google Scholar 

  32. 32.

    Milnerowicz H, Chmarek M. Influence of smoking on metallothionein level and other proteins binding essential metals in human milk. Acta Paediatr Int J Paediatr. 2005;94:402–6.

    Google Scholar 

  33. 33.

    Ermis B, Yildirim A, Tastekin A, Ors R. Influence of smoking on human milk tumor necrosis factor-α, interleukin-1β, and soluble vascular cell adhesion molecule-1 levels at postpartum seventh day. Pediatr Int. 2009;51:821–4.

    CAS  PubMed  Google Scholar 

  34. 34.

    Szlagatys-Sidorkiewicz A, Woś E, Aleksandrowicz E, Łuczak G, Zagierski M, Martysiak-Żurowska D, et al. Cytokine profile of mature milk from smoking and nonsmoking mothers. J Pediatr Gastroenterol Nutr. 2013;56:382–4.

    CAS  PubMed  Google Scholar 

  35. 35.

    Zagierski M, Szlagatys-Sidorkiewicz A, Jankowska A, Krzykowski G, Korzon M, Kaminska B. Maternal smoking decreases antioxidative status of human breast milk. J Perinatol. 2012;32:593–7.

    CAS  PubMed  Google Scholar 

  36. 36.

    Marangoni F, Colombo C, De Angelis L, Gambaro V, Agostoni C, Giovannini M, et al. Cigarette smoke negatively and dose-dependently affects the biosynthetic pathway of the n-3 polyunsaturated fatty acid series in human mammary epithelial cells. Lipids. 2004;39:633–7.

    CAS  PubMed  Google Scholar 

  37. 37.

    Martinez M. Tissue levels of polyunsaturated fatty acids during early human development. J Pediatr. 1992;120:PART 2.

    Google Scholar 

  38. 38.

    Samper MP, Jiménez-Muro A, Nerín I, Marqueta A, Ventura P, Rodríguez G. Maternal active smoking and newborn body composition. Early Hum Dev. 2012;88:141–5.

    CAS  PubMed  Google Scholar 

  39. 39.

    Sowan NA, Stember ML. Effect of maternal prenatal smoking on infant growth and development of obesity. J Perinat Educ. 2005;9:22–29.

    Google Scholar 

  40. 40.

    Campbell C. Long-chain polyunsaturated fatty acids, infant formula, and breastfeeding (multiple letters). Lancet. 1998;352:1703–4.

    CAS  PubMed  Google Scholar 

  41. 41.

    Agostoni C, Riva E, Giovannini M, Pinto F, Colombo C, Risé P, et al. Maternal smoking habits are associated with differences in infants’ long-chain polyunsaturated fatty acids in whole blood: a case-control study. Arch Dis Child. 2008;93:414–8.

    CAS  PubMed  Google Scholar 

  42. 42.

    Cetin I, Giovannini N, Alvino G, Agostoni C, Riva E, Giovannini M, et al. Intrauterine growth restriction is associated with changes in polyunsaturated fatty acid fetal-maternal relationships. Pediatr Res. 2002;52:750–5.

    CAS  PubMed  Google Scholar 

  43. 43.

    Agostoni C, Galli C, Riva E, Colombo C, Giovannini M, Marangoni F. Reduced docosahexaenoic acid synthesis may contribute to growth restriction in infants born to mothers who smoke. J Pediatr. 2005;147:854–6.

    CAS  PubMed  Google Scholar 

  44. 44.

    Chu DM, Antony KM, Ma J, Prince AL, Showalter L, Moller M, et al. The early infant gut microbiome varies in association with a maternal high-fat diet. Genome Med. 2016;8:77.

  45. 45.

    Ma J, Prince AL, Bader D, Hu M, Ganu R, Baquero K, et al. High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model. Nat Commun. 2014;5.

  46. 46.

    Oliveira E, Pinheiro CR, Santos-Silva AP, Trevenzoli IH, Abreu-Villça Y, Nogueira Neto JF, et al. Nicotine exposure affects mother’s and pup’s nutritional, biochemical, and hormonal profiles during lactation in rats. J Endocrinol. 2010;205:159–70.

    CAS  PubMed  Google Scholar 

  47. 47.

    Santos-Silva AP, Oliveira E, Pinheiro CR, Nunes-Freitas AL, Abreu-Villaça Y, Santana AC, et al. Effects of tobacco smoke exposure during lactation on nutritional and hormonal profiles in mothers and offspring. J Endocrinol. 2011;209:75–84.

    CAS  PubMed  Google Scholar 

  48. 48.

    Mcleod G, Sherriff J, Nathan E, Hartmann PE, Simmer K. Four-week nutritional audit of preterm infants born <33 weeks gestation. J Paediatr Child Health. 2013;49:E332–9.

  49. 49.

    Ebadi M, Leuschen MP, Refaey HEL, Hamada FM, Rojas P. The antioxidant properties of zinc and metallothionein. Neurochem Int. 1996;29:159–66.

    CAS  PubMed  Google Scholar 

  50. 50.

    Kunz C, Rodriguez-Palmero M, Koletzko B, Jensen R. Nutritional and biochemical properties of human milk, Part I: general aspects, proteins, and carbohydrates. Clin Perinatol. 1999;26:307–33.

    CAS  PubMed  Google Scholar 

  51. 51.

    Marangoni F, Agostoni C, Lammard AM, Giovannini M, Galli C, Riva E. Polyunsaturated fatty acid concentrations in human hindmilk are stable throughout 12-months of lactation and provide a sustained intake to the infant during exclusive breastfeeding: an Italian study. Br J Nutr. 2000;84:103–9.

    CAS  PubMed  Google Scholar 

  52. 52.

    Carnevale R, Cammisotto V, Pagano F, Nocella C. Effects of smoking on oxidative stress and vascular function. Smoking Prevention and Cessation, IntechOpen. 2018;2:25–47.

  53. 53.

    Groten JP, Sinkeldam EJ, Luten JB, van Bladeren PJ. Cadmium accumulation and metallothionein concentrations after 4-week dietary exposure to cadmium chloride or cadmium-metallothionein in rats. Toxicol Appl Pharm. 1991;111:504–13.

    CAS  Google Scholar 

  54. 54.

    Amici A, Emanuelli M, Ferretti E, Raffaelli N, Ruggieri S, Magni G. Homogeneous pyrimidine nucleotidase from human erythrocytes: enzymic and molecular properties. Biochem J. 1994;304:987–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Bell SG, Vallee BL. The Metallothionein/thionein system: an oxidoreductive metabolic zinc link. ChemBioChem. 2009;10:55–62.

    CAS  PubMed  Google Scholar 

  56. 56.

    Ling XB, Wei HW, Wang J, Kong YQ, Wu YY, Guo JL, et al. Mammalian metallothionein-2A and oxidative stress. Int J Molecular Sci. 2016;17:1483.

Download references

Acknowledgements

We thank the Medical Student Research Academy for supporting this project with lessons about research methodology and manuscript preparation; without its network and support this project would not have been completed.

Author information

Affiliations

Authors

Contributions

MM organized the systematic process, wrote the discussion, and supervised the process. LB and SF reviewed the literature. LB, SF, and DA wrote the results. CA assisted in the review of literature and in writing of the review.

Corresponding author

Correspondence to Marina Macchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Macchi, M., Bambini, L., Franceschini, S. et al. The effect of tobacco smoking during pregnancy and breastfeeding on human milk composition—a systematic review. Eur J Clin Nutr 75, 736–747 (2021). https://doi.org/10.1038/s41430-020-00784-3

Download citation

Further reading

Search

Quick links