Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Challenges in Nutrition

From a “Metabolomics fashion” to a sound application of metabolomics in research on human nutrition

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Karl Popper. Conjectures and refutations. Growth Sci Knowl 2002;291:136. 374. Routledge Classics, Oxford UK

    Google Scholar 

  2. Guijas C, Montenegro-Burke JR, Warth B, Spilker ME, Siuzdak G. Metabolomics activity screening for identifying metabolites that modulate phenotype. Nat Biotechnol. 2018;36:316–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Schüssler Fionza-Rose SM, Contrpois K, Moneghetti KJ, Zhou W, Mishra T, Mataraso S, et al. A longitudinal big data approach for precision health. Nat Med. 2019;792:792–804.

    Google Scholar 

  4. Hou Y-CC, Yu H-C, Martin R, Cirulli ET, Schenker-Ahmed M, Hicks M, et al. Precision medicine integrating whole-genome sequencing, comprehensive metabolomics and advanced imaging. PNAS. 2020;117:3053–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ulaszewska MM, Weinert CN, Trimigno A, Portmann R, Lacueva CA, Badertscher R, et al. Nutrimetabolomics: an integrative action for metabolomic analyses in human nutritional studies. Mol Nutr Food Res. 2019;63:1800384.

    CAS  Google Scholar 

  6. Barnes S, Benton HP, Casazza K, Cooper SJ, Cui X, Engler J, et al. Training in metabolomics. I Designment the experiment, collecting and extracting samples, and generating metabolomics data. J Mass Spectrom. 2016;51:461–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Jang C, Chen L, Rabinowitz JD. Metabolomics and isotope tracing. Cell. 2018;173:822–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Playdon MC, Joshi AD, Tabung FK, Cheng S, Henglin M, Kim A, et al. Metabolomics analytics workflow for epidemiological research: perspectives from the consortium of metabolomics studies (COMETS). Metabolites. 2019;9:145. https://doi.org/10.3390/metabo9070145.

    Article  CAS  PubMed Central  Google Scholar 

  9. NN. Why the metabolism field risks missing out on AI revolution. Nat Metab. 2019;1:929–30.

    Google Scholar 

  10. Wolfe R, Chinkes DL. Isotope tracers in metabolic research: principles and practice of kinetic analysis. 2nd edition. Hoboken, New Jersey, US: Wiley&Sons; 2004.

    Google Scholar 

  11. Cirulli ET, Guo L, Swisher CL, Shah N, Huang L, Napier LA, et al. Profound perturbation of the metabolome in obesity is associated with health risk. Cell Metab. 2019;29:488–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Guasch-Ferre M, Hruby A, Toledo E, Clish CB, Martinez-Gonzales M, Salas-Salvado J, et al. Metabolomics in prediabetes and diabetes: a systematic review and meta-analysis. Diabetes Care. 2016;39:833–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Drogan D, Dunn WB, Lin W, Buijsse B, Schulze MB, Langenberg C, et al. Untargeted metabolic profiling identifies altered serum metabolites of type 2 diabetes mellitus in a prospective, nested case control study. Clin Chem. 2015;61:487–97.

    CAS  PubMed  Google Scholar 

  14. Koch M, Freitag-Wolf S, Schlesinger S, Borggrefe J, Hov JR, Jensen MK, et al. Serum metabolomic profiling highlights pathways associated with liver fat content in a general population sample. Eur J Clin Nutr. 2017;71:995–1001.

    CAS  PubMed  Google Scholar 

  15. Deelen J, Kettunen J, Fischer K, van der Spek A, Trompet S, Kastenmüller K, et al. A metabolic profile of all-cause mortality risk identified in an observational study of 44,168 individuals. Nat Commun. 2019;10:3346. https://doi.org/10.1038/s41467-019-11311-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guasch-Ferre M, Santos JL, Martinez-Gonzales MA, Clish CB, Razquin C, Wang D, et al. Glycolysis/gluconeogenesis- and tricarboxylic acid cycle-related metabolites, Mediterranean diet, and type 2 diabetes. Am J Clin Nutr. 2020. pii: nqaa016. https://doi.org/10.1093/ajcn/nqaa016.

  17. Cheng S, Larson MG, McCabe EL, Murabito JM, Rhee EP, Ho JE, et al. Distinct metabolomic signatures are associated with longevity in humans. Nat Commun. 2015;6:6791.

    CAS  PubMed  Google Scholar 

  18. Liu X, Sadhukkan S, Sun S, Wagner GR, Hirschey MD, Qi L, et al. High-resolution metabolomics with acyl-CoA profiling reveals wide-spread remodeling in response to diet. Mol Cell Proteom. 2015;14:1489–500.

    CAS  Google Scholar 

  19. Green CL, Mitchell SC, Derous D, Wang Y, Chen L, Han J-DJ, et al. the effects of graded levels of calorie restriction: XIV. Global metabolomics screen reveals brown adipose tissue changes in amino acids, catecholamines, and antioxidants after short-term restriction in C57BL/6 mice. J Gerontol A Biol Sci Med Sci. 2019;XX:1–12.

    Google Scholar 

  20. Goncalves MD, Lu C, Tutnauer J, Hartman TE, Hwang S-K, Murphy CJ, et al. High-fructose corn syrup enhances intestinal tumor growth in mice. Science. 2019;363:1343–9.

    Google Scholar 

  21. Zhang K, Han Y, Zhao Q, Zhan T, Li Y, Sun W, et al. Targeted metabolomics analysis reveals that dietary supranutritional selenium regulates sugar and acylcarnitine metabolism homeostasis in pig liver. J Nutr. 2020;150:704–13.

    PubMed  Google Scholar 

  22. Dhurandhar NV, Schoeller D, Brown AW, Heymsfield SB, Thomas D, Sörensen TIA, et al. Energy balance measurement: when something is not better than nothing. Int J Obes. 2015;39:1109–13.

    CAS  Google Scholar 

  23. Satija A, Yu E, Willett WC, Hu FB. Understanding nutritional epidemiology and its role in policy. Adv Nutr. 2015;6:5–18.

    PubMed  PubMed Central  Google Scholar 

  24. Mazzili KM, McClain KM, Lipworth L, Playdon MC, Sampson JN, Clish CB, et al. Identification of 102 correlations between serum metabolites and habitual diet in a metabolomics study of the prostate, lung, colorectal, and ovarian cancer trial. J Nutr. 2020;150:694–703.

    Google Scholar 

  25. Esko T, Hirschhorn JN, Hsu Y-HH, Feldman HA, Ebbeling CB, Ludwig DS, et al. Metabolomic profiles as reliable biomarkers of dietary composition. Am J Clin Nutr. 2017;105:547–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Toledo E, Wang DD, Ruiz-Canela M, Clish CB, Razquin C, Zheng Y, et al. Plasma lipidomic profiles and cardiovascular events in a randomized intervention trial with the Mediterranean diet. Am J Clin Nutr. 2017;106:973–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gibney M, Allison D, Bier D, Dwyer J Uncertainty in human nutrition research. Nat Food. 2020. https://doi.org/10.1038/s43016-020-0073-2.

  28. Müller MJ, Geisler C, Hübers M, Pourhassan M, Bosy-Westphal A. Body composition-related functions: a problem-oriented approach. Eur J Clin Nutr. 2019;73:166–71.

    PubMed  Google Scholar 

  29. Müller MJ, Enderle J, Bosy-Westphal A. Changes in energy expenditure with weight gain and weight loss in humans. Curr Obes Rep. 2016;5:413–23.

    PubMed  PubMed Central  Google Scholar 

  30. Frayn K, Evans R. Human metabolism. 4th Ed., Hoboken-NJ, US: Blackwell-Wiley; 2019.

    Google Scholar 

  31. Newsholme EA, Leech AR. Biochemistry for the medical science. 2nd. Ed. Hoboken-New Jersey, US: John Wiley&Sons; 1988.

    Google Scholar 

  32. Seitz HJ, Faupel RP, Kampf SC, Tarnowski W. Influence of different types of narcosis and neck fracture on the concentration of glycolytic intermediates and related compounds in rat liver. Arch Biochem Biophys. 1973;158:12–18.

    CAS  PubMed  Google Scholar 

  33. Faupel RP, Seitz HJ, Tarnowski W, Thiemann V, Weiss CH. The problem of tissue sampling from experimental animals with respect to freezing techniques, anoxia, stress and narcosis. Arch Biochem Piophys. 1972;148:509–22.

    CAS  Google Scholar 

  34. Wollenberger A, Ristau O, Schoffa CT. Eine einfache Technik der extrem schnellen Abkühlung größerer Gewebestücke. Pflüger’s Arch Ges Physiol. 1960;270:399–412.

    CAS  Google Scholar 

  35. Soares M, Müller MJ. Resting energy expenditure and body composition. Critical aspects for clinical nutrition. Eur J Clin Nutr. 2018;72:1208–14.

    CAS  PubMed  Google Scholar 

  36. Heyland D, Muscedere J, Wischmeyer PE, Cook D, Jones G, Albert M, et al. A randomized trial of glutamine and antioxidants in critically ill patients. N Engl J Med. 2013;368:1489–97.

    CAS  PubMed  Google Scholar 

  37. Müller MJ, Braun W, Pourhassan M, Geisler C, Bosy-Westphal A. Application of standards and models in body composition analysis. Proc Nutr Soc. 2016;75:181–7.

    PubMed  Google Scholar 

  38. Exton JH, Lewis SB, Ho RJ, Robison GA, Park CR. The role of cyclic AMP in the interaction of glucagon and insulin in the control of liver metabolism. Ann NY Acad Sci. 1971;185:85–100.

    CAS  PubMed  Google Scholar 

  39. Gumaa GA, McLean P, Greenbaum AL. Compartmentation in relation to metabolic control in liver. Essays Biochem. 1971;7:39–86.

    CAS  PubMed  Google Scholar 

  40. Seitz HJ, Müller MJ, Krone W, Tarnowski W. Coordinate control of intermediary metabolism in rat liver by the insulin/glucagon ratio during starvation and after glucose refeeding. Regulatory significance of long-chain acyl-CoA and cyclic AMP. Arch Biochem Biophys. 1977;183:647–63.

    CAS  PubMed  Google Scholar 

  41. Seitz HJ, Kaiser M, Krone W, Tarnowski W. Physiologic significance of glucocorticoids and insulin in the regulation of hepatic gluconeogenesis during starvation in rats. Metabolism. 1976;25:1545–155.

    CAS  PubMed  Google Scholar 

  42. Wahren J, Ekberg K. Splanchnic regulation of glucose production. Ann Rev Nutr. 2007;27:329–45.

    CAS  Google Scholar 

  43. Coppack SW, Fisher RM, Humphreys SM, Clark ML, Pointon JJ, Frayn K. Carbohydrate metabolism in insulin resistance: glucose uptake and lactate production by adipose and forearm tissues in vivo before and after a mixed meal. Clin Sci. 1996;90:409–15.

    CAS  Google Scholar 

  44. Müller MJ. Hepatic energy and substrate metabolism: a possible metabolic basis for early nutritional support in cirrhotic patients. Nutrition. 1998;14:30–8.

    PubMed  Google Scholar 

  45. Selberg O, Burchert W, vd Hoff J, Meyer GJ, Hundeshagen H, Radoch E, et al. Insulin resistance in liver cirrhosis. Positron-emission tomography scan analysis of skeletal muscle glucose metabolism. J Clin Invest. 1993;91:1897–902.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Johannsen DL, Marlatt KR, Conley KE, Smith SR, Ravussin E. Metabolic adaptation is not observed after 8 weeks of overfeeding but energy expenditure variability is associated with weight recovery. Am J Clin Nutr. 2019;110:805–13.

    PubMed  PubMed Central  Google Scholar 

  47. Umplepy AM. Tracing lipid metabolism. The value of stable isotopes. J Endocrinol. 2015;216:G1–10.

    Google Scholar 

  48. Davis PSW. Stable isotopes: their use and safety in human nutrition studies. Eur J Clin Nutr. 2020;74:362–5.

    Google Scholar 

  49. Charidemou E, Ashmore T, Griffin JL. The use of stable isotopes in the study of human pathophysiology. Int J Biochem Cell Biol. 2017;93:102–9.

    CAS  PubMed  Google Scholar 

  50. Ulijaszek S. Productive simplification in the use of anthropometric nutritional status. Eur J Clin Nutr. 2020;74:359–61.

    PubMed  Google Scholar 

  51. Müller MJ, Braun W, Enderle J, Bosy-Westphal A. Beyond BMI: conceptual issues related to overweight and obese patients. Obes facts. 2016;9:193–205.

    PubMed  PubMed Central  Google Scholar 

  52. Müller MJ, Geissler C, Blundell J, Dulloo A, Schutz Y, Krawczak M, et al. The case of GWAS of obesity: does body weight control play by the rules? Int J Obes. 2018;42:1395–405.

    Google Scholar 

  53. Hannah Arendt. The human condition. 1st Ed. Chicago, IL, US: University Press; 1958.

    Google Scholar 

Download references

Acknowledgements

We wish to thank Prof. Hans-Joachim Seitz, University Hospital Hamburg Eppendorf, Hamburg, Germany, for referring to his previous and fundamental work on the effects of anoxia, narcotics, euthanization, tissue sampling, and its preparation on the tissue concentrations of intermediates. Many thanks to Prof. John Blundell, Institute of Psychological Sciences, University of Leeds, Leeds, UK, for in depth discussions, ongoing motivation and his critical views on the benefits of the big data research. In addition, thanks to Prof. Mario Soares, School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia, for his valuable discussion and proof reading of the ms.

Author information

Authors and Affiliations

Authors

Contributions

MJM had the idea and wrote the manuscript; ABW contributed to a critical discussion and impacted the final version of the manuscript.

Corresponding author

Correspondence to Manfred J. Müller.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, M.J., Bosy-Westphal, A. From a “Metabolomics fashion” to a sound application of metabolomics in research on human nutrition. Eur J Clin Nutr 74, 1619–1629 (2020). https://doi.org/10.1038/s41430-020-00781-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-020-00781-6

This article is cited by

Search

Quick links