Clinical nutrition

Cognitive performance, mood and satiety following ingestion of beverages imparting different glycaemic responses: a randomised double-blind crossover trial

Abstract

Background/objective

The relationship between postprandial glycaemic responses and cognitive performance, mood and satiety are inconsistent. The objective of this study is to compare the effects of different glycaemic responses, induced by beverages with different glycaemic index (GI) (sucrose and isomaltulose), and a non-glycaemic control (sucralose), on cognition, mood and satiety.

Subjects/methods

In this double-blinded, randomised crossover trial, healthy adults (n = 55) received sucrose (GI 65), isomaltulose (GI 32) and sucralose (non-caloric negative control) drinks on separate occasions. The Complex Figure test, the Word Recall test, Trail Making Test Part B and the Stroop test were administered 60 min after beverages ingestion. Mood and satiety were tested along with cognitive performance.

Results

Comparing between isomaltulose and sucrose, there were no significant differences in the mean (95% CI) for the following: Complex Figure: immediate recall −0.6 (−1.7, 0.5), delayed recall −0.8 (−1.9, 0.3); Word recall: immediate recall 0.2 (−0.7, 1.1), delayed recall 0.5 (−0.4, 1.4); Trail Making: completing time −2.4 (−7.5, 2.7) s; Stroop: time used for correct congruent responses −9 (−31, 14) ms and correct incongruent responses −18 (−42, 6) ms. No differences among beverages were found in the mood and satiety scores with exception that participants felt more energetic 60 min after isomaltulose ingestion (p = 0.028 for difference with sucrose) and hungrier 30 min after isomaltulose ingestion (p = 0.036 for difference with sucrose; p = 0.022 for difference with sucralose).

Conclusion

Under these study conditions there is no convincing evidence for an effect of glycaemic response on cognitive performance, mood or satiety.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Flow chart of the cognitive test participants.
Fig. 2: Glycaemic response following the ingestion of sucrose- or isomaltulose-sweetened beverages (n = 12).

References

  1. 1.

    Mergenthaler P, Lindauer U, Dienel GA, Meisel A. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci. 2013;36:587–97.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010;37:13–25.

    CAS  Article  Google Scholar 

  3. 3.

    Patching SG. Glucose transporters at the blood-brain barrier: function, regulation and gateways for drug delivery. Mol Neurobiol. 2017;54:1046–77.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Messier C. Glucose improvement of memory: a review. Eur J Pharmacol. 2004;490:33–57.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Abi-Saab WM, Maggs DG, Jones T, Jacob R, Srihari V, Thompson J, et al. Striking differences in glucose and lactate levels between brain extracellular fluid and plasma in conscious human subjects: effects of hyperglycemia and hypoglycemia. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2002;22:271–9.

    CAS  Article  Google Scholar 

  6. 6.

    Meeusen R, Watson P, Hasegawa H, Roelands B, Piacentini MF. Brain neurotransmitters in fatigue and overtraining. Appl Physiol, Nutr, Metab. 2007;32:857–64.

    CAS  Article  Google Scholar 

  7. 7.

    Schneider F, Gur RE, Mozley LH, Smith RJ, Mozley PD, Censits DM, et al. Mood effects on limbic blood flow correlate with emotional self-rating: a PET study with oxygen-15 labeled water. Psychiatry Res. 1995;61:265–83.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Ahima RS, Antwi DA. Brain regulation of appetite and satiety. Endocrinol Metab Clin North Am. 2008;37:811–23.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Chapman IM, Goble EA, Wittert GA, Morley JE, Horowitz M. Effect of intravenous glucose and euglycemic insulin infusions on short-term appetite and food intake. Am J Physiol. 1998;274:R596–R603.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Orzi F, Lucignani G, Dow-Edwards D, Namba H, Nehlig A, Patlak CS, et al. Local cerebral glucose utilization in controlled graded levels of hyperglycemia in the conscious rat. J Cereb Blood Flow Metab. 1988;8:346–56.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Pop MG, Crivii C, Opincariu I. Anatomy and function of the hypothalamus. IntechOpen. 2018;1:1–14.

    Google Scholar 

  12. 12.

    Janak PH, Tye KM. From circuits to behaviour in the amygdala. Nature. 2015;517:284–92.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Ragozzino ME, Unick KE, Gold PE. Hippocampal acetylcholine release during memory testing in rats: augmentation by glucose. Proc Natl Acad Sci USA. 1996;93:4693–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Cooper SB, Bandelow S, Nute ML, Morris JG, Nevill ME. Breakfast glycaemic index and cognitive function in adolescent school children. Br J Nutr. 2012;107:1823–32.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Defeyter MA, Russo R. The effect of breakfast cereal consumption on adolescents’ cognitive performance and mood. Front Hum Neurosci. 2013;7:789.

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Micha R, Rogers PJ, Nelson M. Glycaemic index and glycaemic load of breakfast predict cognitive function and mood in school children: a randomised controlled trial. Br J Nutr. 2011;106:1552–61.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Ingwersen J, Defeyter MA, Kennedy DO, Wesnes KA, Scholey AB. A low glycaemic index breakfast cereal preferentially prevents children’s cognitive performance from declining throughout the morning. Appetite. 2007;49:240–4.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    LaCombe A, Ganji V. Influence of two breakfast meals differing in glycemic load on satiety, hunger, and energy intake in preschool children. Nutr J. 2010;9:53.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  19. 19.

    Kaplan RJ, Greenwood CE, Winocur G, Wolever TM. Dietary protein, carbohydrate, and fat enhance memory performance in the healthy elderly. Am J Clin Nutr. 2001;74:687–93.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Westerterp-Plantenga MS, Lemmens SG, Westerterp KR. Dietary protein—its role in satiety, energetics, weight loss and health. Br J Nutr. 2012;108 Suppl 2:S105–12.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Lina BA, Jonker D, Kozianowski G. Isomaltulose (Palatinose): a review of biological and toxicological studies. Food Chem Toxicol. 2002;40:1375–81.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Park JY, Jung JH, Seo DH, Ha SJ, Yoon JW, Kim YC, et al. Microbial production of palatinose through extracellular expression of a sucrose isomerase from Enterobacter sp. FMB-1 in Lactococcus lactis MG1363. Bioresour Technol. 2010;101:8828–33.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Holub I, Gostner A, Theis S, Nosek L, Kudlich T, Melcher R, et al. Novel findings on the metabolic effects of the low glycaemic carbohydrate isomaltulose (Palatinose). Br J Nutr. 2010;103:1730–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    The University of Sydney. https://www.glycemicindex.com/foodSearch.php. Accessed 28 May 2020.

  25. 25.

    Ginieis R, Franz EA, Oey I, Peng M. The “sweet” effect: comparative assessments of dietary sugars on cognitive performance. Physiol Behav. 2018;184:242–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Keesing C, Mills B, Rapsey C, Haszard J, Venn B. Cognitive performance following ingestion of glucose-fructose sweeteners that impart different postprandial glycaemic responses: a randomised control trial. Nutrients 2019;11:2647.

    CAS  PubMed Central  Article  Google Scholar 

  27. 27.

    Rey A. L’examen psychologique dans les cas d’encéphalopathie traumatique.(Les problems.). Archives de Psychologie. 1941;28:215–85.

    Google Scholar 

  28. 28.

    Strauss ShermanEMS, Spreen O. A compendium of neuropsychological tests: administration, norms, and commentary. New York: Oxford University Press; 2006.

    Google Scholar 

  29. 29.

    Brandt J. The Hopkins verbal learning test: development of a new memory test with six equivalent forms. Clin Neuropsychologist. 1991;5:125–42.

    Article  Google Scholar 

  30. 30.

    Reitan RM. The relation of the trail making test to organic brain damage. J Consulting Psychol. 1955;19:393–4.

    CAS  Article  Google Scholar 

  31. 31.

    Stroop JR. Studies of interference in serial verbal reactions. J Exp Psychol. 1935;18:643.

    Article  Google Scholar 

  32. 32.

    Stoet G. Stroop task internet. https://www.psytoolkit.org/experiment-library/stroop.html. psytoolkit.org, United Kingdom. Accessed 4 June 2020.

  33. 33.

    Schmidt JR, De Houwer J. Now you see it, now you don’t: controlling for contingencies and stimulus repetitions eliminates the Gratton effect. Acta Psychologica. 2011;138:176–86.

    PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Bond A, Lader M. The use of analogue scales in rating subjective feelings. Br J Med Psychol. 1974;47:211–8.

    Article  Google Scholar 

  35. 35.

    Flint A, Raben A, Blundell JE, Astrup A. Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int J Obes Relat Metab Disord: J Int Assoc Study Obes. 2000;24:38–48.

    CAS  Article  Google Scholar 

  36. 36.

    Ellenbroek B, Youn J. Rodent models in neuroscience research: is it a rat race? Dis Model Mech. 2016;9:1079–87.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Allen JB, Gross AM, Aloia MS, Billingsley C. The effects of glucose on nonmemory cognitive functioning in the elderly. Neuropsychologia. 1996;34:459–65.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Meikle A, Riby LM, Stollery B. The impact of glucose ingestion and gluco-regulatory control on cognitive performance: a comparison of younger and middle aged adults. Hum Psychopharmacol. 2004;19:523–35.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Sanchez-Aguadero N, Recio-Rodriguez JI, Patino-Alonso MC, Mora-Simon S, Alonso-Dominguez R, Sanchez-Salgado B, et al. Postprandial effects of breakfast glycaemic index on cognitive performance among young, healthy adults: A crossover clinical trial. Nutritional Neurosci. 2020;23:1–7.

    CAS  Article  Google Scholar 

  40. 40.

    Veasey RC, Gonzalez JT, Kennedy DO, Haskell CF, Stevenson EJ. Breakfast consumption and exercise interact to affect cognitive performance and mood later in the day. A randomized controlled trial. Appetite. 2013;68:38–44.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Brindal E, Baird D, Danthiir V, Wilson C, Bowen J, Slater A, et al. Ingesting breakfast meals of different glycaemic load does not alter cognition and satiety in children. Eur J Clin Nutr. 2012;66:1166–71.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Dye L, Gilsenan MB, Quadt F, Martens VEG, Bot A, Lasikiewicz N, et al. Manipulation of glycemic response with isomaltulose in a milk-based drink does not affect cognitive performance in healthy adults. Mol Nutr food Res. 2010;54:506–15.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Green MW, Taylor MA, Elliman NA, Rhodes O. Placebo expectancy effects in the relationship between glucose and cognition. Br J Nutr. 2001;86:173–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Schmitt JAJ, Benton D, Kallus KW. General methodological considerations for the assessment of nutritional influences on human cognitive functions. Eur J Nutr. 2005;44:459–64.

    PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Philippou E, Constantinou M. The influence of glycemic index on cognitive functioning: a systematic review of the evidence. Adv Nutr. 2014;5:119–30.

    PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Riby LM, McLaughlin J, Riby DM, Graham C. Lifestyle, glucose regulation and the cognitive effects of glucose load in middle-aged adults. Br J Nutr. 2008;100:1128–34.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    van de Rest O, van der Zwaluw NL, de Groot LCPGM. Effects of glucose and sucrose on mood: a systematic review of interventional studies. Nutr Rev. 2018;76:108–16.

    PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Shlomowitz A, Feher MD. Anxiety associated with self monitoring of capillary blood glucose. Br J Diabetes Vasc Dis. 2014;14:60–3.

    Article  Google Scholar 

  49. 49.

    Nichol AD, Holle MJ, An R. Glycemic impact of non-nutritive sweeteners: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Nutr. 2018;72:796–804.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Zanchi D, Meyer-Gerspach AC, Schmidt A, Suenderhauf C, Depoorter A, Drewe J, et al. Acute effects of glucose and fructose administration on the neural correlates of cognitive functioning in healthy subjects: a pilot study. Front Psychiatry. 2018;9:71.

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr Meng Tong who designed the software and website used in the cognitive test.

Funding

This study was funded by the University of Otago.

Author information

Affiliations

Authors

Contributions

BJV conceived and supervised the study. BJV and QD designed and undertook the glycaemic testing. CR, QD and MP designed the cognitive testing. TSC was responsible for designing and overseeing the mood component. BJV designed the satiety testing. JJH was responsible for the statistical approach and for undertaking the statistical analysis of the cognitive, mood and satiety data. MP analysed the results of sensory tests. QD undertook the practical work and drafted the manuscript. All authors revised the manuscript.

Corresponding author

Correspondence to Bernard J. Venn.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deng, Q., Haszard, J.J., Conner, T.S. et al. Cognitive performance, mood and satiety following ingestion of beverages imparting different glycaemic responses: a randomised double-blind crossover trial. Eur J Clin Nutr (2020). https://doi.org/10.1038/s41430-020-00749-6

Download citation

Search

Quick links