Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epidemiology

Healthy diets and telomere length and attrition during a 10-year follow-up

Abstract

Background

Telomeres are repeats of DNA that contain the sequence TTAGGG at the ends of each chromosome, and their function is to protect DNA from damage. Little evidence exists regarding the relationship between dietary patterns and telomere length, especially derived applying longitudinal design. The aim was to study if overall dietary pattern is associated with leukocyte telomere length (LTL) or faster telomere attrition or both.

Methods

The setting was longitudinal and observational. Participants were 456 men and 590 women whose birth settled in between 1934 and 1944 and who participated in the Helsinki Birth Cohort Study. Baltic sea diet score (BSDS), modified Mediterranean diet score (mMED), and dietary inflammatory index (DII®) were calculated based on a 128-item food frequency questionnaire (FFQ) collected in 2001–2004. LTL was measured twice, in 2001–2004 and in 2011–2013 by quantitative real-time polymerase chain reaction. Association between the dietary patterns and LTL were analysed by general linear models with appropriate contrasts.

Results

BSDS, mMED, and DII did not associate with LTL in the cross-sectional analysis in men or women. Higher mMED at baseline (2001–2004) was associated with slightly faster LTL shortening during the follow-up (standardized ß −0.08, 95% CI −0.15, −0.01). No association between mMED and LTL change was found in men. Adherence to BSDS and DII did not associate with LTL change in men or women.

Conclusion

Baltic sea diet, Mediterranean diet, and diet’s inflammatory potential seem to have only little impact on telomere length and telomere attrition in elderly Finnish men and women.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. von Zglinicki T, Martin-Ruiz CM. Telomeres as biomarkers for ageing and age-related diseases. Curr Mol Med. 2005;5:197–203.

    Article  Google Scholar 

  2. Fitzpatrick AL, Kronmal RA, Kimura M, Gardner JP, Psaty BM, Jenny NS, et al. Leukocyte telomere length and mortality in the Cardiovascular Health Study. J Gerontol A Biol Sci Med Sci. 2011;66:421–9.

    Article  PubMed  Google Scholar 

  3. Hunt SC, Chen W, Gardner JP, Kimura M, Srinivasan SR, Eckfeldt JH, et al. Leukocyte telomeres are longer in African Americans than in whites: the National Heart, Lung, and Blood Institute Family Heart Study and the Bogalusa Heart Study. Aging Cell. 2008;7:451–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Astuti Y, Wardhana A, Watkins J, Wulaningsih W, PILAR Research Network. Cigarette smoking and telomere length: a systematic review of 84 studies and meta-analysis. Environ Res. 2017;158:480–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Denham J, O’Brien BJ, Charchar FJ. Telomere length maintenance and cardio-metabolic disease prevention through exercise training. Sports Med. 2016;46:1213–37.

    Article  PubMed  Google Scholar 

  6. Furugori E, Hirayama R, Nakamura KI, Kammori M, Esaki Y, Takubo K. Telomere shortening in gastric carcinoma with aging despite telomerase activation. J Cancer Res Clin Oncol. 2000;126:481–5.

    Article  CAS  PubMed  Google Scholar 

  7. Fitzpatrick AL, Kronmal RA, Gardner JP, Psaty BM, Jenny NS, Tracy RP, et al. Leukocyte telomere length and cardiovascular disease in the cardiovascular health study. Am J Epidemiol. 2007;165:14–21.

    Article  PubMed  Google Scholar 

  8. Mundstock E, Sarria EE, Zatti H, Mattos Louzada F, Kich Grun L, Herbert Jones M, et al. Effect of obesity on telomere length: systematic review and meta-analysis. Obesity. 2015;23:2165–74.

    Article  PubMed  Google Scholar 

  9. Mathur MB, Epel E, Kind S, Desai M, Parks CG, Sandler DP, et al. Perceived stress and telomere length: a systematic review, meta-analysis, and methodologic considerations for advancing the field. Brain Behav Immun. 2016;54:158–69.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Marin C, Delgado-Lista J, Ramirez R, Carracedo J, Caballero J, Perez-Martinez P, et al. Mediterranean diet reduces senescence-associated stress in endothelial cells. Age. 2012;34:1309–16.

    Article  CAS  PubMed  Google Scholar 

  11. Garcia-Calzon S, Zalba G, Ruiz-Canela M, Shivappa N, Hebert JR, Martinez JA, et al. Dietary inflammatory index and telomere length in subjects with a high cardiovascular disease risk from the PREDIMED-NAVARRA study: cross-sectional and longitudinal analyses over 5 years. Am J Clin Nutr. 2015;102:897–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gu Y, Honig LS, Schupf N, Lee JH, Luchsinger JA, Stern Y, et al. Mediterranean diet and leukocyte telomere length in a multi-ethnic elderly population. Age. 2015;37:24-015–9758-0.

    Article  Google Scholar 

  13. Perez LM, Amaral MA, Mundstock E, Barbe-Tuana FM, Guma FTCR, Jones MH, et al. Effects of diet on telomere length: systematic review and meta-analysis. Public Health Genom. 2017;20:286–92.

    Article  Google Scholar 

  14. Tiainen AM, Mannisto S, Blomstedt PA, Moltchanova E, Perala MM, Kaartinen NE, et al. Leukocyte telomere length and its relation to food and nutrient intake in an elderly population. Eur J Clin Nutr. 2012;66:1290–4.

    Article  CAS  PubMed  Google Scholar 

  15. Nettleton JA, Diez-Roux A, Jenny NS, Fitzpatrick AL, Jacobs DR Jr. Dietary patterns, food groups, and telomere length in the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr. 2008;88:1405–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Leung CW, Laraia BA, Needham BL, Rehkopf DH, Adler NE, Lin J, et al. Soda and cell aging: associations between sugar-sweetened beverage consumption and leukocyte telomere length in healthy adults from the National Health and Nutrition Examination Surveys. Am J Public Health. 2014;104:2425–31.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Xu Q, Parks CG, DeRoo LA, Cawthon RM, Sandler DP, Chen H. Multivitamin use and telomere length in women. Am J Clin Nutr. 2009;89:1857–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cassidy A, De Vivo I, Liu Y, Han J, Prescott J, Hunter DJ, et al. Associations between diet, lifestyle factors, and telomere length in women. Am J Clin Nutr. 2010;91:1273–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee JY, Jun NR, Yoon D, Shin C, Baik I. Association between dietary patterns in the remote past and telomere length. Eur J Clin Nutr. 2015;69:1048–52.

    Article  PubMed  Google Scholar 

  20. Shivappa N, Wirth MD, Hurley TG, Hebert JR. Association between the dietary inflammatory index (DII) and telomere length and C-reactive protein from the National Health and Nutrition Examination Survey-1999–2002. Mol Nutr Food Res. 2017; https://doi.org/10.1002/mnfr.201600630.

    Article  Google Scholar 

  21. Crous-Bou M, Fung TT, Prescott J, Julin B, Du M, Sun Q, et al. Mediterranean diet and telomere length in Nurses’ Health Study: population based cohort study. BMJ. 2014;349:g6674.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Garcia-Calzon S, Martinez-Gonzalez MA, Razquin C, Aros F, Lapetra J, Martinez JA, et al. Mediterranean diet and telomere length in high cardiovascular risk subjects from the PREDIMED-NAVARRA study. Clin Nutr. 2016;35:1399–405.

    Article  CAS  PubMed  Google Scholar 

  23. Garcia-Calzon S, Martinez-Gonzalez MA, Razquin C, Corella D, Salas-Salvado J, Martinez JA, et al. Pro12Ala polymorphism of the PPARgamma2 gene interacts with a mediterranean diet to prevent telomere shortening in the PREDIMED-NAVARRA randomized trial. Circ Cardiovasc Genet. 2015;8:91–99.

    Article  CAS  PubMed  Google Scholar 

  24. Kanerva N, Loo BM, Eriksson JG, Leiviska J, Kaartinen NE, Jula A, et al. Associations of the Baltic Sea diet with obesity-related markers of inflammation. Ann Med. 2014;46:90–96.

    Article  CAS  PubMed  Google Scholar 

  25. Yliharsila H, Kajantie E, Osmond C, Forsen T, Barker DJ, Eriksson JG. Body mass index during childhood and adult body composition in men and women aged 56–70 years. Am J Clin Nutr. 2008;87:1769–75.

    Article  CAS  PubMed  Google Scholar 

  26. Perala MM, von Bonsdorff M, Mannisto S, Salonen MK, Simonen M, Kanerva N, et al. A healthy Nordic diet and physical performance in old age: findings from the longitudinal Helsinki Birth Cohort Study. Br J Nutr. 2016;115:878–86.

    Article  PubMed  Google Scholar 

  27. Fossati P, Prencipe L. Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clin Chem. 1982;28:2077–80.

    CAS  PubMed  Google Scholar 

  28. Lie RF, Schmitz JM, Pierre KJ, Gochman N. Cholesterol oxidase-based determination, by continuous-flow analysis, of total and free cholesterol in serum. Clin Chem. 1976;22:1627–30.

    CAS  PubMed  Google Scholar 

  29. Lopes-Virella MF, Stone P, Ellis S, Colwell JA. Cholesterol determination in high-density lipoproteins separated by three different methods. Clin Chem. 1977;23:882–4.

    CAS  PubMed  Google Scholar 

  30. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499–502.

    CAS  Google Scholar 

  31. Paalanen L, Mannisto S, Virtanen MJ, Knekt P, Rasanen L, Montonen J, et al. Validity of a food frequency questionnaire varied by age and body mass index. J Clin Epidemiol. 2006;59:994–1001.

    Article  PubMed  Google Scholar 

  32. Mannisto S, Virtanen M, Mikkonen T, Pietinen P. Reproducibility and validity of a food frequency questionnaire in a case-control study on breast cancer. J Clin Epidemiol. 1996;49:401–9.

    Article  CAS  PubMed  Google Scholar 

  33. Reinivuo H, Hirvonen T, Ovaskainen ML, Korhonen T, Valsta LM. Dietary survey methodology of FINDIET 2007 with a risk assessment perspective. Public Health Nutr. 2010;13:915–9.

    Article  PubMed  Google Scholar 

  34. Kanerva N, Kaartinen NE, Schwab U, Lahti-Koski M, Mannisto S. The Baltic Sea Diet Score: a tool for assessing healthy eating in Nordic countries. Public Health Nutr. 2014;17:1697–705.

    Article  PubMed  Google Scholar 

  35. Trichopoulou A, Orfanos P, Norat T, Bueno-de-Mesquita B, Ocke MC, Peeters PH, et al. Modified Mediterranean diet and survival: EPIC-elderly prospective cohort study. BMJ. 2005;330:991.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Shivappa N, Steck SE, Hurley TG, Hussey JR, Ma Y, Ockene IS, et al. A population-based dietary inflammatory index predicts levels of C-reactive protein in the Seasonal Variation of Blood Cholesterol Study (SEASONS). Public Health Nutr. 2014;17:1825–33.

    Article  PubMed  Google Scholar 

  37. Shivappa N, Steck SE, Hurley TG, Hussey JR, Hebert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17:1689–96.

    Article  PubMed  Google Scholar 

  38. Guzzardi MA, Iozzo P, Salonen M, Kajantie E, Eriksson JG. Rate of telomere shortening and metabolic and cardiovascular risk factors: a longitudinal study in the 1934–1944 Helsinki Birth Cohort Study. Ann Med. 2015;47:499–505.

    Article  PubMed  Google Scholar 

  39. Cawthon RM. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002;30:e47.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cawthon RM. Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res. 2009;37:e21.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Willett W, Stampfer MJ. Total energy intake: implications for epidemiologic analyses. Am J Epidemiol. 1986;124:17–27.

    Article  CAS  PubMed  Google Scholar 

  42. Cohen J. Statistical power analysis for the behavioral sciences. 2nd edition. New York, NY: Lawrence Erlbaum Associates; 1988.

    Google Scholar 

  43. Boccardi V, Esposito A, Rizzo MR, Marfella R, Barbieri M, Paolisso G. Mediterranean diet, telomere maintenance and health status among elderly. PLoS One. 2013;8:e62781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. De Meyer T, Bekaert S, De Buyzere ML, De Bacquer DD, Langlois MR, Shivappa N, et al. Leukocyte telomere length and diet in the apparently healthy, middle-aged Asklepios population. Sci Rep. 2018;8:6540-018–24649-9.

    Google Scholar 

  45. Raulio S, Erlund I, Mannisto S, Sarlio-Lahteenkorva S, Sundvall J, Tapanainen H, et al. Successful nutrition policy: improvement of vitamin D intake and status in Finnish adults over the last decade. Eur J Public Health. 2017;27:268–73.

    PubMed  Google Scholar 

  46. Farzaneh-Far R, Lin J, Epel E, Lapham K, Blackburn E, Whooley MA. Telomere length trajectory and its determinants in persons with coronary artery disease: longitudinal findings from the heart and soul study. PLoS One. 2010;5:e8612.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ehrlenbach S, Willeit P, Kiechl S, Willeit J, Reindl M, Schanda K, et al. Influences on the reduction of relative telomere length over 10 years in the population-based Bruneck Study: introduction of a well-controlled high-throughput assay. Int J Epidemiol. 2009;38:1725–34.

    Article  PubMed  Google Scholar 

  48. Verhulst S, Aviv A, Benetos A, Berenson GS, Kark JD. Do leukocyte telomere length dynamics depend on baseline telomere length? An analysis that corrects for ‘regression to the mean’. Eur J Epidemiol. 2013;28:859–66.

    Article  PubMed  Google Scholar 

  49. Teixeira MT, Arneric M, Sperisen P, Lingner J. Telomere length homeostasis is achieved via a switch between telomerase- extendible and -nonextendible states. Cell. 2004;117:323–35.

    Article  CAS  PubMed  Google Scholar 

  50. Willett WC. Nutritional epidemiology. 3rd ed. Oxford: Oxford University Press; 2012.

    Book  Google Scholar 

  51. Lin J, Smith DL, Esteves K, Drury S. Telomere length measurement by qPCR—summary of critical factors and recommendations for assay design. Psychoneuroendocrinology 2018;99:271–278.

    Article  CAS  PubMed  Google Scholar 

  52. Southern EM. A preparative gel electrophoresis apparatus for large scale separations. Anal Biochem. 1979;100:304–18.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from Finska Läkaresällskapet, the Finnish Special Governmental Subsidy for Health Sciences, Academy of Finland, Samfundet Folkhälsan, Liv och Hälsa, the Signe and Ane Gyllenberg Foundation, EU FP7 [Developmental Origins of Healthy Aging (DORIAN)] project number 278603, and EU H2020-PHC-2014-DynaHealth grant 633595 (all for the Helsinki Birth Cohort Study).

Funding

Supported by grants from Finska Läkaresällskapet, the Finnish Special Governmental Subsidy for Health Sciences, Academy of Finland, Samfundet Folkhälsan, Liv och Hälsa, the Signe and Ane Gyllenberg Foundation, EU FP7 [Developmental Origins of Healthy Aging (DORIAN)] project number 278603, and EU H2020-PHC-2014-DynaHealth grant 633595 (all for the Helsinki Birth Cohort Study).

Author contributions

JM, JGE, SM, MMP, and HK designed research, JGE, MMP, NK, SM, PI, MAG, NS, and JRH provided essential materials, JM and HK performed statistical analysis, JM wrote the paper, JM had primary responsibility of final content, JM, JGE, SM, MMP, NK, PI, MAG, HK, JRH, and NS provided inputs to the paper and approved the final version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelena Meinilä.

Ethics declarations

Conflict of interest

Dr. James R. Hébert owns controlling interest in Connecting Health Innovations LLC (CHI), a company planning to license the right to his invention of the Dietary Inflammatory Index (DII) from the University of South Carolina in order to develop computer and smart phone applications for patient counseling and dietary intervention in clinical settings. Dr. Nitin Shivappa is an employee of CHI. The remaining authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meinilä, J., Perälä, MM., Kautiainen, H. et al. Healthy diets and telomere length and attrition during a 10-year follow-up. Eur J Clin Nutr 73, 1352–1360 (2019). https://doi.org/10.1038/s41430-018-0387-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-018-0387-4

This article is cited by

Search

Quick links