Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Silkworm model of bacterial infection facilitates the identification of lysocin E, a potent, ultra-rapid bactericidal antibiotic

Abstract

The development of novel antimicrobial agents is required to solve the problem of antimicrobial resistance. We established a quantitative method for evaluating the therapeutic efficacy of antimicrobial agents in a silkworm bacterial infection model. Pharmacokinetic factors are present in the silkworm as well as in mice, and evaluating the therapeutic efficacy of antimicrobial agents is possible in a silkworm infection model, comparable to that in a mammalian model. This silkworm model was used to screen for novel antimicrobial agents with therapeutic efficacy as an indicator. As a result, a new antibiotic, lysocin E, was discovered. Lysocin E has a completely different mechanism of action from existing antimicrobial agents, and its potent bactericidal activity leads to remarkable therapeutic efficacy in a mouse model. In this review, I describe the features of the silkworm model that have contributed to the discovery of lysocin E and its mechanisms of action.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Butler MS, Henderson IR, Capon RJ, Blaskovich MAT. Antibiotics in the clinical pipeline as of December 2022. J Antibiot. 2023;76:431–73.

    Article  CAS  Google Scholar 

  2. Jones AK, Buckingham SD, Sattelle DB. Chemistry-to-gene screens in Caenorhabditis elegans. Nat Rev Drug Discov. 2005;4:321–30.

    Article  CAS  PubMed  Google Scholar 

  3. Needham AJ, Kibart M, Crossley H, Ingham PW, Foster SJ. Drosophila melanogaster as a model host for Staphylococcus aureus infection. Microbiology. 2004;150:2347–55.

    Article  CAS  PubMed  Google Scholar 

  4. Garcia-Lara J, Needham AJ, Foster SJ. Invertebrates as animal models for Staphylococcus aureus pathogenesis: a window into host-pathogen interaction. FEMS Immunol Med Microbiol. 2005;43:311–23.

    Article  CAS  PubMed  Google Scholar 

  5. Kaito C, Akimitsu N, Watanabe H, Sekimizu K. Silkworm larvae as an animal model of bacterial infection pathogenic to humans. Micro Pathog. 2002;32:183–90.

    Article  Google Scholar 

  6. Desbois AP, Coote PJ. Wax moth larva (Galleria mellonella): an in vivo model for assessing the efficacy of antistaphylococcal agents. J Antimicrob Chemother. 2011;66:1785–90.

    Article  CAS  PubMed  Google Scholar 

  7. Champion OL, Cooper IAM, James SL, Ford D, Karlyshev A, Wren BW, et al. Galleria mellonella as an alternative infection model for Yersinia pseudotuberculosis. Microbiology. 2009;155:1516–22.

    Article  CAS  PubMed  Google Scholar 

  8. Kaito C, Kurokawa K, Matsumoto Y, Terao Y, Kawabata S, Hamada S, Sekimizu K. Silkworm pathogenic bacteria infection model for identification of novel virulence genes. Mol Microbiol. 2005;56:934–44.

    Article  CAS  PubMed  Google Scholar 

  9. Hossain MS, Hamamoto H, Matsumoto Y, Razanajatovo IM, Larranaga J, Kaito C, et al. Use of silkworm larvae to study pathogenic bacterial toxins. J Biochem. 2006;140:439–44.

    Article  CAS  PubMed  Google Scholar 

  10. Paudel A, Hamamoto H, Panthee S, Matsumoto Y, Sekimizu K. Large-scale screening and identification of novel pathogenic Staphylococcus aureus genes using a silkworm infection model. J Infect Dis. 2020;221:1795–804.

    Article  CAS  PubMed  Google Scholar 

  11. Banno Y, Shimada T, Kajiura Z, Sezutsu H. The silkworm-an attractive BioResource supplied by Japan. Exp Anim. 2010;59:139–46.

    Article  CAS  PubMed  Google Scholar 

  12. Meng Y, Katsuma S, Daimon T, Banno Y, Uchino K, Sezutsu H, et al. The silkworm mutant lemon (lemon lethal) is a potential insect model for human sepiapterin reductase deficiency. J Biol Chem. 2009;284:11698–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Matsumoto Y, Ishii M, Ishii K, Miyaguchi W, Horie R, Inagaki Y, et al. Transgenic silkworms expressing human insulin receptors for evaluation of therapeutically active insulin receptor agonists. Biochem Biophys Res Commun. 2014;455:159–64.

    Article  CAS  PubMed  Google Scholar 

  14. Matsumoto Y, Xu Q, Miyazaki S, Kaito C, Farr CL, Axelrod HL, et al. Structure of a virulence regulatory factor CvfB reveals a novel winged helix RNA binding module. Structure. 2010;18:537–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hamamoto H, Kurokawa K, Kaito C, Kamura K, Manitra Razanajatovo I, Kusuhara H, et al. Quantitative evaluation of the therapeutic effects of antibiotics using silkworms infected with human pathogenic microorganisms. Antimicrob Agents Chemother. 2004;48:774–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hamamoto H, Kamura K, Razanajatovo IM, Murakami K, Santa T, Sekimizu K. Effects of molecular mass and hydrophobicity on transport rates through non-specific pathways of the silkworm larva midgut. Int J Antimicrob Agents. 2005;26:38–42.

    Article  CAS  PubMed  Google Scholar 

  17. Hamamoto H, Tonoike A, Narushima K, Horie R, Sekimizu K. Silkworm as a model animal to evaluate drug candidate toxicity and metabolism. Comp Biochem Physiol C Toxicol Pharm. 2009;149:334–9.

    Article  Google Scholar 

  18. Hamamoto H, Horie R, Sekimizu K. Pharmacokinetics of anti-infectious reagents in silkworms. Sci Rep. 2019;9:9451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Paudel A, Panthee S, Urai M, Hamamoto H, Ohwada T, Sekimizu K. Pharmacokinetic parameters explain the therapeutic activity of antimicrobial agents in a silkworm infection model. Sci Rep. 2018;8:1578.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yasu T, Matsumoto Y, Sugita T. Pharmacokinetics of voriconazole and its alteration by Candida albicans infection in silkworms. J Antibiot. 2021;74:443–9.

    Article  CAS  Google Scholar 

  21. Paudel A, Hamamoto H, Panthee S, Kaneko K, Matsunaga S, Kanai M, et al. A novel spiro-heterocyclic compound identified by the silkworm infection model inhibits transcription in Staphylococcus aureus. Front Microbiol. 2017;8:712.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Paudel A, Panthee S, Hamamoto H, Sekimizu K. GPI0363 inhibits the interaction of RNA polymerase with DNA in Staphylococcus aureus. RSC Adv. 2019;9:37889–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hamamoto H, Urai M, Ishii K, Yasukawa J, Paudel A, Murai M, et al. Lysocin E is a new antibiotic that targets menaquinone in the bacterial membrane. Nat Chem Biol. 2015;11:127–33.

    Article  CAS  PubMed  Google Scholar 

  24. Yagi A, Uchida R, Hamamoto H, Sekimizu K, Kimura KI, Tomoda H. Anti-Mycobacterium activity of microbial peptides in a silkworm infection model with Mycobacterium smegmatis. J Antibiot. 2017;70:685–90.

    Article  CAS  Google Scholar 

  25. Geberetsadik G, Inaizumi A, Nishiyama A, Yamaguchi T, Hamamoto H, Panthee S, et al. Lysocin E targeting menaquinone in the membrane of mycobacterium tuberculosis is a promising lead compound for antituberculosis drugs. Antimicrob Agents Chemother. 2022;66:e0017122.

    Article  PubMed  Google Scholar 

  26. Panthee S, Paudel A, Hamamoto H, Uhlemann AC, Sekimizu K. The role of amino acid substitution in HepT toward menaquinone isoprenoid chain length definition and lysocin E sensitivity in Staphylococcus aureus. Front Microbiol. 2020;11:2076.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Vestergaard M, Roshanak S, Ingmer H. Targeting the ATP Synthase in Staphylococcus aureus small colony variants, streptococcus pyogenes and pathogenic fungi. Antibiotics. 2021;10:376.

  28. Santiago M, Lee W, Fayad AA, Coe KA, Rajagopal M, Do T, et al. Genome-wide mutant profiling predicts the mechanism of a Lipid II binding antibiotic. Nat Chem Biol. 2018;14:601–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Uchida R, Hanaki H, Matsui H, Hamamoto H, Sekimizu K, Iwatsuki M, et al. In vitro and in vivo anti-MRSA activities of nosokomycins. Drug Discov Ther. 2014;8:249–54.

    Article  PubMed  Google Scholar 

  30. Nakamura I, Kanasaki R, Yoshikawa K, Furukawa S, Fujie A, Hamamoto H, Sekimizu K. Discovery of a new antifungal agent ASP2397 using a silkworm model of Aspergillus fumigatus infection. J Antibiot. 2017;70:41–44.

    Article  CAS  Google Scholar 

  31. Paudel A, Furuta Y, Higashi H. Silkworm model for Bacillus anthracis infection and virulence determination. Virulence. 2021;12:2285–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Matsumoto Y, Tateyama Y, Sugita T. Evaluation of antibacterial drugs using silkworms infected by Cutibacterium acnes. Insects. 2021;12:619.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Miyashita A, Iyoda S, Ishii K, Hamamoto H, Sekimizu K, Kaito C. Lipopolysaccharide O-antigen of enterohemorrhagic Escherichia coli O157:H7 is required for killing both insects and mammals. FEMS Microbiol Lett. 2012;333:59–68.

    Article  CAS  PubMed  Google Scholar 

  34. Saha SS, Suzuki J, Uda A, Watanabe K, Shimizu T, Watarai M. Silkworm model for Francisella novicida infection. Micro Pathog. 2017;113:94–101.

    Article  CAS  Google Scholar 

  35. Castillo Y, Suzuki J, Watanabe K, Shimizu T, Watarai M. Effect of Vitamin A on listeria monocytogenes infection in a silkworm model. PLoS ONE. 2016;11:e0163747.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tuba T, Chowdhury FR, Hossain T, Farzana M, Ahad I, Hossain MM et al. Klebsiella pneumoniae pathogenicity in silk moth larvae infection model. FEMS Microbiol Lett. 2022;368:fnab159.

  37. Hosoda K, Koyama N, Hamamoto H, Yagi A, Uchida R, Kanamoto A, Tomoda H. Evaluation of anti-Mycobacterial compounds in a silkworm infection model with Mycobacteroides abscessus. Molecules. 2020;25:4971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yagi A, Yamazaki H, Terahara T, Yang T, Hamamoto H, Imada C, et al. Development of an in vivo-mimic silkworm infection model with Mycobacterium avium complex. Drug Discov Ther. 2021;14:287–95.

    Article  PubMed  Google Scholar 

  39. Hossain MI, Saleh NUA, Numan A, Hossain MM, Uddin MA, Hossain MS. Bombyx mori as a model for Niallia circulans pathogenicity. Drug Discov Ther. 2023;17:18–25.

    Article  CAS  PubMed  Google Scholar 

  40. Mikami K, Sonobe K, Ishino K, Noda T, Kato M, Hanao M, et al. Evaluation of pathogenicity and therapeutic effectiveness of antibiotics using silkworm Nocardia infection model. Drug Discov Ther. 2021;15:73–77.

    Article  CAS  PubMed  Google Scholar 

  41. Chieda Y, Iiyama K, Lee JM, Kusakabe T, Yasunaga-Aoki C, Shimizu S. Virulence of an exotoxin A-deficient strain of Pseudomonas aeruginosa toward the silkworm, Bombyx mori. Micro Pathog. 2011;51:407–14.

    Article  CAS  Google Scholar 

  42. Li G, Xia X, Zhao S, Shi M, Liu F, Zhu Y. The physiological and toxicological effects of antibiotics on an interspecies insect model. Chemosphere. 2020;248:126019.

    Article  CAS  PubMed  Google Scholar 

  43. Yonemoto K, Chiba A, Sugimoto S, Sato C, Saito M, Kinjo Y et al. Redundant and distinct roles of secreted protein EAP and cell wall-anchored protein sasg in biofilm formation and pathogenicity of Staphylococcus aureus. Infect Immun. 2019;87:e00894-18.

  44. Yamamoto M, Kashimoto T, Yoshimura Y, Tachibana N, Kuroda S, Miki Y, et al. A silkworm infection model to investigate Vibrio vulnificus virulence genes. Mol Med Rep. 2016;14:4243–7.

    Article  CAS  PubMed  Google Scholar 

  45. Ishii M, Matsumoto Y, Yamada T, Abe S, Sekimizu K. An invertebrate infection model for evaluating anti-fungal agents against dermatophytosis. Sci Rep. 2017;7:12289.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yu Y, Wolf AK, Thusek S, Heinekamp T, Bromley M, Krappmann S et al. Direct visualization of fungal burden in filamentous fungus-infected silkworms. J Fungi. 2021;7:136.

  47. Hanaoka N, Takano Y, Shibuya K, Fugo H, Uehara Y, Niimi M. Identification of the putative protein phosphatase gene PTC1 as a virulence-related gene using a silkworm model of Candida albicans infection. Eukaryot Cell. 2008;7:1640–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Matsumoto Y, Kurakado S, Sugita T. Evaluating Candida albicans biofilm formation in silkworms. Med Mycol. 2021;59:201–5.

    Article  CAS  PubMed  Google Scholar 

  49. Kurakado S, Matsumoto Y, Sugita T. Comparing the virulence of four major clades of Candida auris strains using a silkworm infection model: Clade IV isolates had higher virulence than the other clades. Med Mycol. 2023;61:myad108.

  50. Ueno K, Matsumoto Y, Uno J, Sasamoto K, Sekimizu K, Kinjo Y, Chibana H. Intestinal resident yeast Candida glabrata requires Cyb2p-mediated lactate assimilation to adapt in mouse intestine. PLoS ONE. 2011;6:e24759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Matsumoto Y, Miyazaki S, Fukunaga DH, Shimizu K, Kawamoto S, Sekimizu K. Quantitative evaluation of cryptococcal pathogenesis and antifungal drugs using a silkworm infection model with Cryptococcus neoformans. J Appl Microbiol. 2012;112:138–46.

    Article  CAS  PubMed  Google Scholar 

  52. Panthee S, Hamamoto H, Nishiyama Y, Paudel A, Sekimizu K. Novel pathogenic mucorales identified using the silkworm infection model. J Fungi. 2021;7:995.

    Article  CAS  Google Scholar 

  53. Kurakado S, Matsumoto Y, Sugita T. Efficacy of posaconazole against rhizopus Oryzae infection in silkworm. Med Mycol J. 2021;62:53–57.

    Article  CAS  PubMed  Google Scholar 

  54. Matsumoto Y, Yamazaki H, Yamasaki Y, Tateyama Y, Yamada T, Sugita T. A novel silkworm infection model with fluorescence imaging using transgenic Trichosporon asahii expressing eGFP. Sci Rep. 2020;10:10991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I extend my heartfelt gratitude to Professor Emeritus Hiroshi Tomoda of Kitasato University for receiving the Sumiki-Umezawa Memorial Award in 2023 from the Japan Antibiotics Research Association. I also want to express my sincere appreciation to my mentor, Professor Emeritus Kazuhisa Sekimizu of the University of Tokyo. Furthermore, I am thankful to numerous researchers and students who contributed significantly to this research. Special acknowledgment goes to Professor Emeritus Hideo Yamaguchi of Teikyo University for his invaluable suggestions for the development of drugs for infectious diseases.

Funding

This work was supported partly by the Program for Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation (NIBIO), Japan Science and Technology Agency (JST) A-STEP (High-Risk Challenging Type), Drug Discovery Support Promotion Project from AMED: Japan Agency for Medical Research and Development, JSPS KAKENHI (Grant No. 24689008, 26102714, 15H05783, 19K07140, 23H02719) the Mochida Memorial Foundation for Medical and Pharmaceutical Research, the Takeda Science Foundation, the Institute for Fermentation, Osaka.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Hamamoto.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Hiroshi Hamamoto was awarded the Sumiki-Umezawa Memorial Award from the Japan Antibiotics Research Association in 2022. This review article is partly based on his award-winning research.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamamoto, H. Silkworm model of bacterial infection facilitates the identification of lysocin E, a potent, ultra-rapid bactericidal antibiotic. J Antibiot (2024). https://doi.org/10.1038/s41429-024-00739-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41429-024-00739-x

Search

Quick links