Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tumescenamide C, a cyclic lipodepsipeptide from Streptomyces sp. KUSC_F05, exerts antimicrobial activity against the scab-forming actinomycete Streptomyces scabiei

Abstract

The antimicrobial activity of tumescenamide C against the scab-forming S. scabiei NBRC13768 was confirmed with a potent IC50 value (1.5 μg/mL). Three tumescenamide C-resistant S. scabiei strains were generated to compare their gene variants. All three resistant strains contained nonsynonymous variants in genes related to cellobiose/cellotriose transport system components; cebF1, cebF2, and cebG2, which are responsible for the production of the phytotoxin thaxtomin A. Decrease in thaxtomin A production and the virulence of the three resistant strains were revealed by the LC/MS analysis and necrosis assay, respectively. Although the nonsynonymous variants were insufficient for identifying the molecular target of tumescenamide C, the cell wall component wall teichoic acid (WTA) was observed to bind significantly to tumescenamide C. Moreover, changes in the WTA contents were detected in the tumescenamide C-resistant strains. These results imply that tumescenamide C targets the cell wall system to exert antimicrobial effects on S. scabiei.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data sets generated for this study are included in this article or supporting information; further information can be directed to the corresponding author (H.K.).

References

  1. Li Y, Liu J, Díaz-Cruz G, Cheng Z, Bignell DRD. Virulence mechanisms of plant-pathogenic Streptomyces species: an updated review. Microbiol. 2019;165:1025–40.

    Article  CAS  Google Scholar 

  2. Loria R, Kers J, Joshi M. Evolution of plant pathogenicity in Streptomyces. Annu Rev Phytopathol. 2006;44:469–87.

    Article  CAS  PubMed  Google Scholar 

  3. Liu J, Nothias L-F, Dorrestein PC, Tahlan K, Bignell DRD. Genomic and metabolomic analysis of the potato common scab pathogen Streptomyces scabiei. ACS Omega. 2021;6:11474–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dees M, Wanner L. In search of better management of potato common scab. Potato Res. 2012;55:249–68.

    Article  Google Scholar 

  5. Arseneault T, Goyer C, Filion M. Biocontrol of potato common scab is associated with high Pseudomonas fluorescens LBUM223 populations and phenazine-1-carboxylic acid biosynthetic transcript accumulation in the potato geocaulosphere. Phytopathol. 2016;106:963–70.

    Article  CAS  Google Scholar 

  6. Lin C, Tsai C-H, Chen P-Y, Wu C-Y, Chang Y-L, Yang Y-L. Biological control of potato common scab by Bacillus amyloliquefaciens Ba01. PLoS One. 2018;13:e0196520

    Article  PubMed  PubMed Central  Google Scholar 

  7. Biessy A, Filion M. Biological control of potato common scab by plant-beneficial bacteria. Biol Control. 2022;165:104808–21.

    Article  CAS  Google Scholar 

  8. Toussaint V, Valois D, Dodier M, Faucher E, Déry C, Brzezinski R. Characterization of actinomycetes antagonistic to Phytophthora fragariae var. rubi, the causal agent of raspberry root rot. Phytoprotection. 1997;78:43–51.

    Article  Google Scholar 

  9. Beauséjour J, Clermont N, Beaulieu C. Effect of Streptomyces melanosporofaciens strain EF-76 and of chitosan on common scab of potato. Plant Soil. 2003;256:463–8.

    Article  Google Scholar 

  10. Kishimoto S, Tsunematsu Y, Nishimura S, Hayashi Y, Hattori A, Kakeya H. an antimicrobial cyclic lipodepsipeptide from Streptomyces sp. Tetrahedron. 2012;68:5572–8.

    Article  CAS  Google Scholar 

  11. Takahashi N, Kaneko K, Kakeya H.Total synthesis and antimicrobial activity of tumescenamide C and its derivatives.J Org Chem.2020;85:4530–5.

    Article  CAS  PubMed  Google Scholar 

  12. Loria R. Differential production of thaxtomins by pathogenic Streptomyces species in vitro. Phytopathology. 1995;85:537–41.

    Article  CAS  Google Scholar 

  13. Bignell DRD, Francis IM, Fyans JK, Loria R. Thaxtomin A production and virulence are controlled by several bld gene global regulators in Streptomyces scabies. Mol Plant Microbe Interact. 2014;27:875–85.

    Article  CAS  PubMed  Google Scholar 

  14. Culp EJ, Waglechner N, Wang W, Fiebig-Comyn AA, Hsu Y-P, Koteva K. et al. Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling. Nature. 2020;578:582–7.

    Article  CAS  PubMed  Google Scholar 

  15. van der Aart LT, Spijksma GK, Harms A, Vollmer W, Hankemeier T, van Wezel GP. High-resolution analysis of the peptidoglycan composition in Streptomyces coelicolor. J Bacteriol. 2018;200:e00290–18.

    PubMed  PubMed Central  Google Scholar 

  16. Schaub RE, Dillard JP. Digestion of peptidoglycan and analysis of soluble fragments. Bio-Protoc. 2017;7:2438.

    Article  Google Scholar 

  17. Kühner D, Stahl M, Demircioglu DD, Bertsche U. From cells to muropeptide structures in 24 h: peptidoglycan mapping by UPLC-MS. Sci Rep. 2014;4:7494.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kho K, Meredith TC. Extraction and Analysis of Bacterial Teichoic Acids. Bio-Protoc. 2018;8:e3078.

  19. Imai Y, Meyer KJ, Iinishi A, Favre-Godal Q, Green R, Manuse S. et al. A new antibiotic selectively kills gram-negative pathogens. Nature. 2019;576:459–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bowden G, Johnson J, Schachtele C.The predominant actinomyces spp. isolated from infected dentin of active root caries lesions.J Dent Res. 1993;72:1171–9.

    Article  CAS  PubMed  Google Scholar 

  21. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis 33 program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–8.

    CAS  Google Scholar 

  22. Jourdan S, Francis IM, Kim MJ, Salazar JJC, Planckaert S, Frère J-M. et al. The CebE/MsiK transporter is a doorway to the cello-oligosaccharide-mediated induction of Streptomyces scabies pathogenicity. Sci Rep.2016;6:27144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bignell DR, Seipke RF, Huguet-Tapia JC, Chambers AH, Parry RJ, Loria R. Streptomyces scabies 87-22 contains a coronafacic acid-like biosynthetic cluster that contributes to plant-microbe interactions. Mol Plant Microbe Interact. 2010;23:161–75.

    Article  CAS  PubMed  Google Scholar 

  24. Francis IM, Bergin D, Deflandre B, Gupta S, Salazar JJC, Villagrana R. et al. Role of alternative elicitor transporters in the onset of plant host colonization by Streptomyces scabiei 87-22. Biology. 2023;12:234–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Deflandre B, Stulanovic N, Planckaert S, Anderssen S, Bonometti B, Karim L. et al. The virulome of Streptomyces scabiei in response to cello-oligosaccharide elicitors. Microb Genom.2022;8:000760

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kinkel LL, Bowers JH, Shimizu K, Neeno-Eckwall EC, Schottel JL. Quantitative relationships among thaxtomin A production, potato scab severity, and fatty acid composition in Streptomyces. Can J Microbiol. 1998;44:768–76.

    Article  CAS  PubMed  Google Scholar 

  27. Jourdan S, Francis IM, Deflandre B, Tenconi E, Riley J, Planckaert S. et al. Contribution of the β-glucosidase BglC to the onset of the pathogenic lifestyle of Streptomyces scabies. Mol Plant Pathol. 2018;19:1480–90.

    Article  CAS  PubMed  Google Scholar 

  28. Wang H, Gill CJ, Lee SH, Mann P, Zuck P, Meredith TC. et al. Discovery of wall teichoic acid inhibitors as potential anti-MRSA β-lactam combination agents. Chem Biol. 2013;20:272–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bem AE, Velikova N, Pellicer MT, van Baarlen P, Marina A, Wells JM. Bacterial histidine kinases as novel antibacterial drug targets. ACS Chem Biol. 2015;10:213–24.

    Article  CAS  PubMed  Google Scholar 

  30. Kunkle T, Abdeen S, Salim N, Ray A-M, Stevens M, Ambrose AJ. et al. Hydroxybiphenylamide GroEL/ES inhibitors are potent antibacterials against planktonic and biofilm forms of Staphylococcus aureus. J Med Chem.2018;61:10651–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Swoboda JG, Meredith TC, Campbell J, Brown S, Suzuki T, Bollenbach T. et al. Discovery of a small molecule that blocks wall teichoic acid biosynthesis in Staphylococcus aureus. ACS Chem Biol.2009;4:875–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Campbell J, Singh AK, Santa Maria JP,Jr., Kim Y, Brown S, Swoboda JG. et al. Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus. ACS Chem Biol.2011;6:106–16.

    Article  CAS  PubMed  Google Scholar 

  33. Lee SH, Wang H, Labroli M, Koseoglu S, Zuck P, Mayhood T. et al. TarO-specific inhibitors of wall teichoic acid biosynthesis restore β-lactam efficacy against methicillin-resistant staphylococci. Sci Transl Med.2016;8:329ra32

    Article  PubMed  Google Scholar 

  34. Naumova IB, Shashkov AS, Tul’skaya EM, Streshinskaya GM, Kozlova YI, Potekhina NV. et al. Cell wall teichoic acids: structural diversity, species specificity in the genus Nocardiopsis, and chemotaxonomic perspective. FEMS Microbiol Rev.2001;25:269–83.

    Article  CAS  PubMed  Google Scholar 

  35. Brown S, Santa Maria JP Jr, Walker S. Wall teichoic acids of gram-positive bacteria. Annu Rev Microbiol. 2013;67:313–36.

    Article  CAS  PubMed  Google Scholar 

  36. Takenaka K, Kaneko K, Takahashi N, Nishimura S, Kakeya H. Retro-aza-Michael reaction of an o-aminophenol adduct in protic solvents inspired by natural products. Bioorg Med Chem. 2021;35:116059–116059.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in Aid for Scientific Research on Innovative Areas (No. 17H06401 to HK) and for the Transformative Research Area (A) (No. 23H04882 to HK) from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan, and the Research Support Project for Life Science and Drug Discovery [Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)] from the Japan Agency for Medical Research and Development (AMED), Japan. This work was also inspired by the international and interdisciplinary environments of JSPS Asian CORE program, “Asian Chemical Biology Initiative”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Kakeya.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaneko, K., Mieda, M., Jiang, Y. et al. Tumescenamide C, a cyclic lipodepsipeptide from Streptomyces sp. KUSC_F05, exerts antimicrobial activity against the scab-forming actinomycete Streptomyces scabiei. J Antibiot 77, 353–364 (2024). https://doi.org/10.1038/s41429-024-00716-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-024-00716-4

Search

Quick links