Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In vitro and ex vivo activity of the fluoroquinolone DC-159a against mycobacteria

Abstract

Antimicrobial resistance is a global health problem. In 2021, it was estimated almost half a million of multidrug-resistant tuberculosis (MDR-TB) cases. Besides, non-tuberculous mycobacteria (NTM) are highly resistant to several drugs and the emergence of fluoroquinolone (FQ) resistant M. tuberculosis (Mtb) is also a global concern making treatments difficult and with variable outcome. The aim of this study was to evaluate the activity of the FQ, DC-159a, against Mtb and NTM and to explore the cross-resistance with the currently used FQs.

A total of 12 pre-extensively drug-resistant (XDR) Mtb, 2 XDR, 36 fully drug susceptible strains and 41 NTM isolates were included to estimate the in vitro activity of DC-159a, moxifloxacin (MOX) and levofloxacin (LX), using minimal inhibitory and bactericidal concentration (MIC and MBC). The activity inside the human macrophages and pulmonary epithelial cells were also determined.

DC-159a was active in vitro and ex vivo against mycobacteria. Besides, it was more active than MOX/LX. Moreover, no cross-resistance was evidenced between DC-159a and LX/MOX as DC-159a could inhibit Mtb and MAC strains that were already resistant to LX/MOX.

DC-159a could be a possible candidate in new therapeutic regimens for MDR/ XDR-TB and mycobacterioses cases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Murray CJL, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 2022;399:629–55.

    Article  CAS  Google Scholar 

  2. WHO. WHO Global Tuberculosis Report. 2020. https://www.who.int/publications/i/item/9789240013131.

  3. CDC. Emergence of Mycobacterium tuberculosis with extensive resistance to second-line drugs worldwide. MMWR Morb Mortal Wkly Rep. 2006;55:301–5.

    Google Scholar 

  4. WHO. WHO Extensively drug-resistant tuberculosis (XDR.TB): recommendations for prevention and control. Wkly Epidemiol Rec. 2006;81:430–2.

    Google Scholar 

  5. Nahid P, et al. Treatment of drug-resistant tuberculosis. an official ATS/CDC/ERS/IDSA clinical practice guideline. Am J Respir Crit Care Med. 2020;201:500–1.

    Article  Google Scholar 

  6. Imperiale BR, Di Giulio AB, Cataldi AA, Morcillo NS. Evaluation of Mycobacterium tuberculosis cross-resistance to isoniazid, rifampicin and levofloxacin with their respective structural analogs. J Antibiot. 2014;67:749–54.

    Article  CAS  Google Scholar 

  7. Cheng AF, et al. Multiplex PCR amplimer conformation analysis for rapid detection of gyrA mutations in fluoroquinolone-resistant Mycobacterium tuberculosis clinical isolates. Antimicrob Agents Chemother. 2004;48:596–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ruiz J. Mechanisms of resistance to quinolones: target alterations, decreased accumulation and DNA gyrase protection. J Antimicrob Chemother. 2003;51:1109–17.

    Article  CAS  PubMed  Google Scholar 

  9. Hooper DC, Wolfson JS. Fluoroquinolone antimicrobial agents. N. Engl J Med. 1991;324:384–94.

    Article  CAS  PubMed  Google Scholar 

  10. Falkinham JO 3rd. Nontuberculous mycobacteria in the environment. Clin Chest Med. 2002;23:529–51.

    Article  PubMed  Google Scholar 

  11. Simons S, et al. Nontuberculous mycobacteria in respiratory tract infections. Eastern Asia. Emerg Infect Dis. 2011;17:343–9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Prevots DR, Marras TK. Epidemiology of human pulmonary infection with non-tuberculous mycobacteria: a review. Clin Chest Med. 2015;36:13–34.

    Article  PubMed  Google Scholar 

  13. Henkle E, Hedberg K, Schafer SD, Winthrop KL. Surveillance of extrapulmonary nontuberculous mycobacteria infections, Oregon, USA, 2007–2012. Emerg Infect Dis. 2017;23:1627–30.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Brode SK, Marchaund-Austin A, Jamieson FB, Marras TK. Pulmonary versus nonpulmonary nontuberculous Mycobacteria, Ontario, Canada. Emerg Infect Dis. 2017;23:1898–901.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cassidy PM, Hedberg K, Saulson A, McNelly E, Winthrop KL. Nontuberculous mycobacterial disease prevalence and risk factors: a changing epidemiology. Clin Infect Dis. 2009;49:e124–e9.

    Article  PubMed  Google Scholar 

  16. To K, Cao R, Yegiazaryan A, Owens J, Venketaraman V. General overview of nontuberculous mycobacteria opportunistic pathogens: Mycobacterium avium and Mycobacterium abscessus. J Clin Med. 2020;9:254.

    Article  Google Scholar 

  17. Hoefsloot W, et al. The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: an NTM-NET collaborative study. Eur Respir J. 2013;42:1604–13.

    Article  PubMed  Google Scholar 

  18. Karakousis PC, Moore RD, Chaisson RE. Mycobacterium avium complex in patients with HIV infection in the era of highly active antiretroviral therapy. Lancet Infect Dis. 2004;9:557–965.

    Article  Google Scholar 

  19. Imperiale B, et al. Disease caused by non-tuberculous mycobacteria: diagnostic procedures and treatment evaluation in the North of Buenos Aires Province. Rev Argent Microbiol. 2012;44:3–9.

    PubMed  Google Scholar 

  20. Falkingham JO. Epidemiology of infection by nontuberculous mycobacteria. Clin Microbiol Rev. 1996;9:177–215.

    Article  Google Scholar 

  21. Imperiale BR, et al. Genetic diversity of Mycobacterium avium complex strains isolated in Argentina by MIRU-VNTR. Epidemiol Infect. 2017;145:1382–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. El-Zaatari FA, Osato MS, Graham DY. Etiology of Crohn’s disease: the role of Mycobacterium avium paratuberculosis. Trends Mol Med. 2001;7:247–52.

    Article  CAS  PubMed  Google Scholar 

  23. Thorel MF, Krichevsky M, Lévy-Frébault VV. Numerical taxonomy of mycobactin-dependent mycobacteria, emended description of Mycobacterium avium, and description of Mycobacterium avium subsp avium subsp nov, Mycobacterium avium subsp paratuberculosis subsp nov, and Mycobacterium avium subsp silvaticum subsp nov. Int J Syst Bacteriol. 1990;40:254–60.

    Article  CAS  PubMed  Google Scholar 

  24. Alvarez J, et al. Genetic diversity of Mycobacterium avium isolates recovered from clinical samples and from the environment: molecular characterization for diagnostic purposes. J Clin Microbiol. 2008;46:1246–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Martin A, Colmant A, Verroken A, Rodriguez-Villalobos H. Laboratory diagnosis of nontuberculous mycobacteria in a Belgium Hospital. Int J Mycobacteriol. 2019;8:157–61.

    Article  CAS  PubMed  Google Scholar 

  26. Prevots DR, Loddenkemper R, Sotgiu G, Migliori GB. Non tuberculous mycobacterial pulmonary disease: an increasing burden with substantial costs. Eur Respir J. 2017;49:1700374.

    Article  PubMed  Google Scholar 

  27. Piersimoni C, Scarparo C. Pulmonary infections associated with non-tuberculous mycobacteria in immunocompetent patients. Lancet Infect Dis. 2008;8:323–34.

    Article  PubMed  Google Scholar 

  28. García García JM, Gutiérrez Palacios JJ, Sánchez Antuña AA. Respiratory infections caused by environmental mycobacteria. Arch Bronconeumol. 2005;4:206–19.

    Google Scholar 

  29. Hoshino K, et al. In vitro and in vivo antibacterial activities of DC-159a, a new fluoroquinolone. Antimicrob Agents Chemother. 2008;52:65–76.

    Article  CAS  PubMed  Google Scholar 

  30. Disratthakit A, Doi N. In vitro activities of DC-159a, a novel fluoroquinolone, against Mycobacterium species. Antimicrob Agents Chemother. 2010;54:2684–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yamaguchi T, Yokoyama K, Nakajima C, Suzuki Y. DC-159a shows inhibitory activity against DNA gyrases of Mycobacterium leprae. PLoS Negl Trop Dis. 2016;10:e0005013. 28

    Article  PubMed  PubMed Central  Google Scholar 

  32. Koide K, et al. Antibacterial activity of DC-159a against Salmonella Typhimurium. Micro Drug Resist. 2019;25:14–22.

    Article  CAS  Google Scholar 

  33. Cynamon M, Sklaney MR, Shoene C. Gatifloxacin in combination with rifampicin in a murine tuberculosis model. J Antimicrob Chemother. 2007;60:429–32.

    Article  CAS  PubMed  Google Scholar 

  34. Nuermberger EL, et al. Moxifloxacin-containing regimen greatly reduces time to culture conversion in murine tuberculosis. Am J Respir Crit Care Med. 2003;169:421–6.

    Article  PubMed  Google Scholar 

  35. Drlica K, Zhao X, Kreiswirth B. Minimising moxifloxacin resistance with tuberculosis. Lancet Infect Dis. 2008;8:273–5.

    Article  PubMed  Google Scholar 

  36. Martin A, et al. Multicenter study of MTT and resazurin assays for testing susceptibility to first-line anti-tuberculosis drugs. Int J Tuberc Lung Dis. 2005;9:901–6.

    CAS  PubMed  Google Scholar 

  37. Bals R, Hiemstra PS. Innate immunity in the lung: how epithelial cells fight against respiratory pathogens. Eur Respir J. 2004;23:327–33.

    Article  CAS  PubMed  Google Scholar 

  38. Schleimer RP, et al. Epithelium, inflammation, and immunity in the upper airways of humans: studies in chronic rhinosinusitis. Proc Am Thorac Soc. 2009;6:288–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Strieter RM, Belperio JA, Keane MP. Host innate defenses in the lung: the role of cytokines. Curr Opin Infect Dis. 2003;16:193–8.

    Article  CAS  PubMed  Google Scholar 

  40. Kamerbeek J, et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol. 1997;35:907–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Imperiale BR, Zumárraga MJ, Di Giulio AB, Cataldi AA, Morcillo NS. Molecular and phenotypic characterisation of Mycobacterium tuberculosis resistant to anti-tuberculosis drugs. Int J Tuberc Lung Dis. 2013;17:1088–93.

    Article  CAS  PubMed  Google Scholar 

  42. Moyano RD, et al. Genetic diversity of Mycobacterium avium sp. paratuberculosis by mycobacterial interspersed repetitive Unit-Variable number tandem repeat and multi-locus short-sequence repeat. Int J Mycobacteriol. 2021;10:51–9.

    Article  CAS  PubMed  Google Scholar 

  43. Morcillo NS, et al. A microplate indicator-based method for determining the susceptibility of multidrug-resistant M. tuberculosis to antimicrobial agents. Int J Tuberc Lung Dis. 2004;8:253–9.

    CAS  PubMed  Google Scholar 

  44. Andrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother. 2001;48:5–16.

    Article  CAS  PubMed  Google Scholar 

  45. Morcillo N, Imperiale B, Di Giulio B. Evaluation of MGIT 960™ and the colorimetric-based method for tuberculosis drug susceptibility testing. Int J Tuberc Lung Dis. 2010;14:1169–75.

    CAS  PubMed  Google Scholar 

  46. Mor N, Heifets L. MICs and MBCs of clarithromycin against Mycobacterium avium within human macrophages. Antimicrob Agents Chemother. 1993;37:111–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.

    Article  CAS  PubMed  Google Scholar 

  48. Kim HY. Statistical notes for clinical researchers: Chi-squared test and Fisher’s exact test. Restor Dent Endod. 2017;42:152–5.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sekiguchi J, Disratthakit A, Maeda S, Doi N. Characteristic resistance mechanism of Mycobacterium tuberculosis to DC-159a, a new respiratory quinolone. Antimicrob Agents Chemother. 2011;55:3958–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pitaksajjakul P, et al. Mutations in the gyrA and gyrB genes of fluoroquinolone-resistant Mycobacterium tuberculosis from TB patients in Thailand. Southeast Asian J Trop Med Public Health. 2005;36:228–37.

    CAS  PubMed  Google Scholar 

  51. Nakamura H, Horita Y. Comparative Evaluation of New Respiratory Quinolone DC-159a or Moxifloxacin Containing Regimens in a Murine TB Model. [Abstract 038] ASM Microbiome. 2017: session 035. REF: https://www.newtbdrugs.org/pipeline/compound/dc-159a.

  52. Paillard D, Grellet J, Dubois V, Saux MC, Quentin C. Discrepancy between uptake and intracellular activity of moxifloxacin in a Staphylococcus aureus-human THP-1 monocytic cell model. Antimicrob Agents Chemother. 2002;46:288–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ahmad Z, et al. Activity of the fluoroquinolone DC-159a in the initial and continuation phases of treatment of murine tuberculosis. Antimicrob Agents Chemother. 2011;55:1781–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tandon R, Nath M. Tackling drug-resistant tuberculosis: current trends and approaches. Mini Rev Med Chem. 2017;17:549–70. 2017

    Article  CAS  PubMed  Google Scholar 

  55. Soni I, De Groote M, Dasgupta A, Chopra S. Challenges facing the drug discovery pipeline for non-tuberculous mycobacteria. J Med Microbiol. 2016;65:1–8.

    Article  CAS  PubMed  Google Scholar 

  56. Kumar D, Negi B, Rawat DS. The anti-tuberculosis agents under development and the challenges ahead. Future Med Chem. 2015;7:1981–2003.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

DC-159a was provided by Daiichi Sankyo Co., Ltd. (Tokyo, Japan). This work was financially supported by National Agency of Scientific and Technological Promotion (PICT 2020-1134).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belén R. Imperiale.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imperiale, B.R., Mancino, M.B., Moyano, R.D. et al. In vitro and ex vivo activity of the fluoroquinolone DC-159a against mycobacteria. J Antibiot 77, 306–314 (2024). https://doi.org/10.1038/s41429-024-00709-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-024-00709-3

Search

Quick links