Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The tunicamycin derivative TunR2 exhibits potent antibiotic properties with low toxicity in an in vivo Mycobacterium marinum-zebrafish TB infection model

Abstract

Tunicamycins (TUN) are well-defined, Streptomyces-derived natural products that inhibit protein N-glycosylation in eukaryotes, and by a conserved mechanism also block bacterial cell wall biosynthesis. TUN inhibits the polyprenylphosphate-N-acetyl-hexosamine-1-phospho-transferases (PNPT), an essential family of enzymes found in both bacteria and eukaryotes. We have previously published the development of chemically modified TUN, called TunR1 and TunR2, that have considerably reduced activity on eukaryotes but that retain the potent antibacterial properties. A mechanism for this reduced toxicity has also been reported. TunR1 and TunR2 have been tested against mammalian cell lines in culture and against live insect cells but, until now, no in vivo evaluation has been undertaken for vertebrates. In the current work, TUN, TunR1, and TunR2 are investigated for their relative toxicity and antimycobacterial activity in zebrafish using a well-established Mycobacterium marinum (M. marinum) infection system, a model for studying human Mycobacterium tuberculosis infections. We also report the relative ability to activate the unfolded protein response (UPR), the known mechanism for the eukaryotic toxicity observed with TUN treatment. Importantly, TunR1 and TunR2 retained their antimicrobial properties, as evidenced by a reduction in M. marinum bacterial burden, compared to DMSO-treated zebrafish. In summary, findings from this study highlight the characteristics of recently developed TUN derivatives, mainly TunR2, and its potential for use as a novel anti-bacterial agent for veterinary and potential medical purposes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. CDC. Centers for Disease Control and Prevention. 2022 [cited 2022 Sep 5]. The biggest antibiotic-resistant threats in the U.S. Available from: https://www.cdc.gov/drugresistance/biggest-threats.html

  2. Sekhri L, Kadri ML, Samira C, Senigra M. Synthesis of penicillin derivatives and study of their biological antibacterial activities. Biomed Pharm J. 2015;1:257–64.

    Google Scholar 

  3. Pan X, He Y, Chen T, Chan KF, Zhao Y. Modified Penicillin Molecule with Carbapenem-Like Stereochemistry Specifically Inhibits Class C β-Lactamases. Antimicrob Agents Chemother. 2017;61:e01288–17.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhu X, Liu D, Singh AK, Drolia R, Bai X, Tenguria S, et al. Tunicamycin Mediated Inhibition of Wall Teichoic Acid Affects Staphylococcus aureus and Listeria monocytogenes Cell Morphology, Biofilm Formation and Virulence. Front Microbiol. 2018;9:1352.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Huszár S, Singh V, Polčicová A, Baráth P, Barrio MB, Lagrange S, et al. N-Acetylglucosamine-1-Phosphate Transferase, WecA, as a Validated Drug Target in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2017;61:e01310–17.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cundell DR, Tuomanen EI. Receptor specificity of adherence of Streptococcus pneumoniae to human type-II pneumocytes and vascular endothelial cells in vitro. Micro Pathog. 1994;17:361–74.

    Article  CAS  Google Scholar 

  7. Cantagrel V, Lefeber DJ. From glycosylation disorders to dolichol biosynthesis defects: a new class of metabolic diseases. J Inherit Metab Dis. 2011;34:859–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Eichler J, Imperiali B. Biogenesis of Asparagine-Linked Glycoproteins Across Domains of Life—Similarities and Differences. ACS Chem Biol. 2018;13:833–7. https://pubs.acs.org/doi/pdf/10.1021/acschembio.8b00163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lehle L, Strahl S, Tanner W. Protein Glycosylation, Conserved from Yeast to Man: A Model Organism Helps Elucidate Congenital Human Diseases. Angew Chem Int Ed. 2006;45:6802–18.

    Article  CAS  Google Scholar 

  10. Bugg TDH, Kerr RV. Mechanism of action of nucleoside antibacterial natural product antibiotics. J Antibiot (Tokyo). 2019;72:865–76.

    Article  CAS  PubMed  Google Scholar 

  11. Shan L, Wenling Q, Mauro P, Stefano B. Antibacterial Agents Targeting the Bacterial Cell Wall. Curr Med Chem. 2020;27:2902–26.

    Article  CAS  PubMed  Google Scholar 

  12. Schröder M, Kaufman RJ. ER stress and the unfolded protein response. Mutat Res Mol Mech Mutagen. 2005;569:29–63.

    Article  Google Scholar 

  13. Abdullahi A, Stanojcic M, Parousis A, Patsouris D, Jeschke MG. Modeling Acute ER stress in vivo and in vitro. Shock Augusta Ga. 2017;47:506–13.

    Article  CAS  PubMed  Google Scholar 

  14. Tkacz JS, Lampen O. Tunicamycin inhibition of polyisoprenyl N-acetylglucosaminyl pyrophosphate formation in calf-liver microsomes. Biochem Biophys Res Commun. 1975;65:248–57.

    Article  CAS  PubMed  Google Scholar 

  15. Price NPJ, Jackson MA, Singh V, Hartman TM, Blackburn JA, Dowd PF. Synergistic enhancement of beta-lactam antibiotics by modified tunicamycin analogs TunR1 and TunR2. J Antibiot (Tokyo). 2019;72:807–15.

    Article  CAS  PubMed  Google Scholar 

  16. Price NP, Hartman TM, Li J, Velpula KK, Naumann TA, Guda MR, et al. Modified tunicamycins with reduced eukaryotic toxicity that enhance the antibacterial activity of β-lactams. J Antibiot (Tokyo). 2017;70:1070–7.

    Article  CAS  PubMed  Google Scholar 

  17. Dong YY, Wang H, Pike ACW, Cochrane SA, Hamedzadeh S, Wyszyński FJ, et al. Structures of DPAGT1 Explain Glycosylation Disease Mechanisms and Advance TB Antibiotic Design. Cell. 2018;175:1045–e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mitachi K, Mingle D, Effah W, Sánchez-Ruiz A, Hevener KE, Narayanan R, et al. Concise Synthesis of Tunicamycin V and Discovery of a Cytostatic DPAGT1 Inhibitor. Angew Chem Int Ed. 2022;61:e202203225.

    Article  ADS  CAS  Google Scholar 

  19. Hakulinen JK, Hering J, Brändén G, Chen H, Snijder A, Ek M, et al. MraY-antibiotic complex reveals details of tunicamycin mode of action. Nat Chem Biol. 2017;13:265–7.

    Article  CAS  PubMed  Google Scholar 

  20. Yoo J, Mashalidis EH, Kuk ACY, Yamamoto K, Kaeser B, Ichikawa S, et al. GlcNAc-1-P-transferase–tunicamycin complex structure reveals basis for inhibition of N-glycosylation. Nat Struct Mol Biol. 2018;25:217–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mashalidis EH, Lee SY. Structures of bacterial MraY and human GPT provide insights into rational antibiotic design. J Mol Biol. 2020;432:4946–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hering J, Dunevall E, Snijder A, Eriksson PO, Jackson MA, Hartman TM, et al. Exploring the Active Site of the Antibacterial Target MraY by Modified Tunicamycins. ACS Chem Biol. 2020;15:2885–95.

    Article  CAS  PubMed  Google Scholar 

  23. Takaki K, Davis JM, Winglee K, Ramakrishnan L. Evaluation of the pathogenesis and treatment of Mycobacterium marinum infection in zebrafish. Nat Protoc. 2013;8:1114–24.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tobin DM, Ramakrishnan L. Comparative pathogenesis of Mycobacterium marinum and Mycobacterium tuberculosis. Cell Microbiol. 2008;10:1027–39.

    Article  CAS  PubMed  Google Scholar 

  25. Sridevi JP, Anantaraju HS, Kulkarni P, Yogeeswari P, Sriram D. Optimization and validation of Mycobacterium marinum-induced adult zebrafish model for evaluation of oral anti-tuberculosis drugs. Int J Mycobacteriol. 2014;3:259–67.

    Article  PubMed  Google Scholar 

  26. Davis JM, Clay H, Lewis JL, Ghori N, Herbomel P, Ramakrishnan L. Real-Time Visualization of Mycobacterium-Macrophage Interactions Leading to Initiation of Granuloma Formation in Zebrafish Embryos. Immunity. 2002;17:693–702.

    Article  CAS  PubMed  Google Scholar 

  27. Clark EM, Nonarath HJT, Bostrom JR, Link BA. Establishment and validation of an endoplasmic reticulum stress reporter to monitor zebrafish ATF6 activity in development and disease. Dis Model Mech. 2020;13:dmm041426.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ellett F, Pase L, Hayman JW, Andrianopoulos A, Lieschke GJ. mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood. 2011;117:e49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Matty MA, Knudsen DR, Walton EM, Beerman RW, Cronan MR, Pyle CJ, et al. Potentiation of P2RX7 as a host-directed strategy for control of mycobacterial infection. Garrett WS, Kana BD, Barczak A, editors. eLife. 2019;8:e39123.

  30. Price NP, Labeda DP, Naumann TA, Vermillion KE, Bowman MJ, Berhow MA, et al. Quinovosamycins: new tunicamycin-type antibiotics in which the α, β-1″,11′-linked N-acetylglucosamine residue is replaced by N-acetylquinovosamine. J Antibiot (Tokyo). 2016;69:637–46.

    Article  CAS  PubMed  Google Scholar 

  31. Bookstaver PB, Bland CM, Griffin B, Stover KR, Eiland LS, McLaughlin M. A Review of Antibiotic Use in Pregnancy. Pharmacotherapy. 2015;35:1052–62.

    Article  CAS  PubMed  Google Scholar 

  32. Nakanishi K, Sudo T, Morishima N. Endoplasmic reticulum stress signaling transmitted by ATF6 mediates apoptosis during muscle development. J Cell Biol. 2005;169:555–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang X, Karamariti E, Simpson R, Wang W, Xu Q. Dickkopf Homolog 3 Induces Stem Cell Differentiation into Smooth Muscle Lineage via ATF6 Signalling. J Biol Chem. 2015;290:19844–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Habjan E, Ho VQT, Gallant J, van Stempvoort G, Jim KK, Kuijl C, et al. An anti-tuberculosis compound screen using a zebrafish infection model identifies an aspartyl-tRNA synthetase inhibitor. Dis Model Mech. 2021;14:dmm049145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dalton JP, Uy B, Okuda KS, Hall CJ, Denny WA, Crosier PS, et al. Screening of anti-mycobacterial compounds in a naturally infected zebrafish larvae model. J Antimicrob Chemother. 2017;72:421–7.

    Article  CAS  PubMed  Google Scholar 

  36. Demain AL. Antibiotics: Natural products essential to human health. Med Res Rev. 2009;29:821–42.

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Cinaroglu A, Gao C, Imrie D, Sadler KC. Atf6 plays protective and pathologic roles in fatty liver disease due to endoplasmic reticulum stress. Hepatol Balt Md. 2011;54:495–508.

    Article  CAS  Google Scholar 

  38. Li J, Chen Z, Gao LY, Colorni A, Ucko M, Fang S, et al. A transgenic zebrafish model for monitoring xbp1 splicing and endoplasmic reticulum stress in vivo. Mech Dev. 2015;137:33–44.

    Article  CAS  PubMed  Google Scholar 

  39. Yeh KY, Lai CY, Lin CY, Hsu CC, Lo CP, Her GM. ATF4 overexpression induces early onset of hyperlipidaemia and hepatic steatosis and enhances adipogenesis in zebrafish. Sci Rep. 2017;7:16362.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  40. Kenyon S, Pike K, Jones DR, Brocklehurst P, Marlow N, Salt A, et al. Childhood outcomes after prescription of antibiotics to pregnant women with spontaneous preterm labour: 7-year follow-up of the ORACLE II trial. Lancet Lond Engl. 2008;372:1319–27.

    Article  CAS  Google Scholar 

  41. Qiu W, Fang M, Magnuson JT, Greer JB, Chen Q, Zheng Y, et al. Maternal exposure to environmental antibiotic mixture during gravid period predicts gastrointestinal effects in zebrafish offspring. J Hazard Mater. 2020;399:123009.

    Article  CAS  PubMed  Google Scholar 

  42. Bengmark S, Göransson G, Zoucas E. Defects in hemostasis produced by antibiotics. An in vivo study in the rat. Eur Surg Res Eur Chir Forsch Rech Chir Eur. 1981;13:290–8.

    CAS  Google Scholar 

  43. Ailes EC, Gilboa SM, Gill SK, Broussard CS, Crider KS, Berry RJ, et al. Association between antibiotic use among pregnant women with urinary tract infections in the first trimester and birth defects, National Birth Defects Prevention Study 1997 to 2011. Birth Defects Res A Clin Mol Teratol. 2016;106:940–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hoyberghs J, Bars C, Ayuso M, Van Ginneken C, Foubert K, Van Cruchten S. DMSO Concentrations up to 1% are Safe to be Used in the Zebrafish Embryo Developmental Toxicity Assay. Front Toxicol. 2021;3:804033.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Maes J, Verlooy L, Buenafe OE, Witte PAM, de, Esguerra CV, Crawford AD. Evaluation of 14 Organic Solvents and Carriers for Screening Applications in Zebrafish Embryos and Larvae. PLOS ONE. 2012;7:e43850.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Thuning CA, Fanshaw MS, Warren J. Mechanisms of the synergistic effect of oral dimethyl sulfoxide on antineoplastic therapy. Ann N. Y Acad Sci. 1983;411:150–60.

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Christou M, Kavaliauskis A, Ropstad E, Fraser TWK. DMSO effects larval zebrafish (Danio rerio) behavior, with additive and interaction effects when combined with positive controls. Sci Total Environ. 2020;709:134490.

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Kim K, Lee SE. Combined toxicity of dimethyl sulfoxide (DMSO) and vanadium towards zebrafish embryos (Danio rerio): Unexpected synergistic effect by DMSO. Chemosphere. 2021;270:129405.

    Article  CAS  PubMed  Google Scholar 

  49. Uribe PM, Mueller MA, Gleichman JS, Kramer MD, Wang Q, Sibrian-Vazquez M, et al. Dimethyl Sulfoxide (DMSO) Exacerbates Cisplatin-induced Sensory Hair Cell Death in Zebrafish (Danio rerio). PLoS. 2013;8:e55359. https://dspace.mit.edu/handle/1721.1/78920

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the U.S. Department of Agriculture, Agricultural Research Service (N.P.J.P. and M.A.J.), and by Eminent Scholar funds from the Medical College of Wisconsin (B.A.L). T.C.Z. was supported by the National Institute of Allergy and Infectious Diseases (5R21AI144225-02). We acknowledge C. Skory (NCAUR-ARS, Peoria, IL) and J. Bannantine (NADC-ARS, Ames, IA) for helpful discussion and suggestions on the preparation of this manuscript. We thank T. Hartman for expert technical support and David M. Tobin (Duke University) for sharing reagents. Finally we acknowledge the use of BioRender for the generation of diagrams used in this manuscript. Mention of trade names or commercial products in this article is solely for the purpose of providing scientific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Neil P. J. Price or Brian A. Link.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nonarath, H.J.T., Jackson, M.A., Penoske, R.M. et al. The tunicamycin derivative TunR2 exhibits potent antibiotic properties with low toxicity in an in vivo Mycobacterium marinum-zebrafish TB infection model. J Antibiot 77, 245–256 (2024). https://doi.org/10.1038/s41429-023-00694-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-023-00694-z

Search

Quick links