Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Causes of polymyxin treatment failure and new derivatives to fill the gap

Abstract

Polymyxins are a class of antibiotics that were discovered in 1947 from programs searching for compounds effective in the treatment of Gram-negative infections. Produced by the Gram-positive bacterium Paenibacillus polymyxa and composed of a cyclic peptide chain with a peptide-fatty acyl tail, polymyxins exert bactericidal effects through membrane disruption. Currently, polymyxin B and colistin (polymyxin E) have been developed for clinical use, where they are reserved as “last-line” therapies for multidrug-resistant (MDR) infections. Unfortunately, the incidences of strains resistant to polymyxins have been increasing globally, and polymyxin heteroresistance has been gaining appreciation as an important clinical challenge. These phenomena, along with bacterial tolerance to this antibiotic class, constitute important contributors to polymyxin treatment failure. Here, we review polymyxins and their mechanism of action, summarize the current understanding of how polymyxin treatment fails, and discuss how the next generation of polymyxins holds promise to invigorate this antibiotic class.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Benedict RG, Langlykke AF. Antibiotic activity of Bacillus polymyxa. J Bacteriol. 1947;54:24.

    CAS  PubMed  Google Scholar 

  2. Ainsworth GC, Brown AM, Brownlee G. Aerosporin, an antibiotic produced by Bacillus aerosporus greer. Nature 1947;159:263.

    Article  CAS  PubMed  Google Scholar 

  3. Stansly PG, Shepherd RG, White HJ. Polymyxin: a new chemotherapeutic agent. Bull Johns Hopkins Hosp. 1947;81:43–54.

    CAS  PubMed  Google Scholar 

  4. Fleming A. On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol. 1929;10:226–36.

    CAS  PubMed Central  Google Scholar 

  5. Velkov T, Thompson PE, Azad MAK, Roberts KD, Bergen PJ. History, Chemistry and Antibacterial Spectrum. In:Li J, Nation RL, Kaye KS, editors. Polymyxin antibiotics: from laboratory bench to bedside, Vol 1145. Cham, Switzerland: Springer International Publishing; 2019. p. 15–36.

  6. WHO. World Health Organization Model List of Essential Medicines – 22nd List, 2021. 2021. https://www.who.int/publications/i/item/WHO-MHP-HPS-EML-2021.02

  7. FDA. FDA Approved Drug Products. Label and approval history for Coly-Mycin M, NDA 050108. 2017. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=050108.

  8. Nation RL, et al. Updated US and European Dose Recommendations for Intravenous Colistin: How Do They Perform? Clin Infect Dis. 2015;62:552–8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zavascki AP, Goldani LZ, Li J, Nation RL. Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. J Antimicrob Chemother. 2007;60:1206–15.

    Article  CAS  PubMed  Google Scholar 

  10. Levin AS, et al. Intravenous colistin as therapy for nosocomial infections caused by multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Clin Infect Dis. 1999;28:1008–11.

    Article  CAS  PubMed  Google Scholar 

  11. Markou N, et al. Intravenous colistin in the treatment of sepsis from multiresistant Gram-negative bacilli in critically ill patients. Crit Care. 2003;7:R78–83.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Garnacho-Montero J, et al. Treatment of multidrug-resistant Acinetobacter baumannii ventilator-associated pneumonia (VAP) with intravenous colistin: a comparison with imipenem-susceptible VAP. Clin Infect Dis. 2003;36:1111–8.

    Article  CAS  PubMed  Google Scholar 

  13. Lu L-C, Chang F-Y, Lv G-Z, Lan S-H. Effectiveness and Safety of Compound Polymyxin B Ointment in Treatment of Burn Wounds: A Meta-analysis. J Burn Care Res. 2021;43:453–61.

    Article  Google Scholar 

  14. Johansen HK, Moskowitz SM, Ciofu O, Pressler T, Høiby N. Spread of colistin resistant non-mucoid Pseudomonas aeruginosa among chronically infected Danish cystic fibrosis patients. J Cyst Fibros. 2008;7:391–7.

    Article  PubMed  Google Scholar 

  15. Arduino SM, et al. 2012. Transposons and integrons in colistin-resistant clones of Klebsiella pneumoniae and Acinetobacter baumannii with epidemic or sporadic behaviour. J Med Microbiol. 2012;61:1417–20.

    Article  PubMed  Google Scholar 

  16. Mammina C, et al. Ongoing spread of colistin-resistant Klebsiella pneumoniae in different wards of an acute general hospital, Italy, June to December 2011. Eur Surveill. 2012;17:20248.

    Article  Google Scholar 

  17. Thet KT, et al. Colistin heteroresistance in carbapenem-resistant Acinetobacter baumannii clinical isolates from a Thai university hospital. World J Microbiol Biotechnol. 2020;36:102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hong Y-K, Kim H, Ko KS. Two types of colistin heteroresistance in Acinetobacter baumannii isolates. Emerg Microbes Infect. 2020;9:2114–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Howard-Anderson J, et al. Prevalence of colistin heteroresistance in carbapenem-resistant Pseudomonas aeruginosa and association with clinical outcomes in patients: an observational study. J Antimicrob Chemother. 2022;77:793–8.

    Article  CAS  PubMed  Google Scholar 

  20. Lin J, et al. Resistance and Heteroresistance to Colistin in Pseudomonas aeruginosa Isolates from Wenzhou, China. Antimicrob Agents Chemother. 2019;63:e00556–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hermes DM, et al. Evaluation of heteroresistance to polymyxin B among carbapenem-susceptible and -resistant Pseudomonas aeruginosa. J Med Microbiol. 2013;62:1184–9.

    Article  PubMed  Google Scholar 

  22. Bardet L, et al. Deciphering Heteroresistance to Colistin in a Klebsiella pneumoniae Isolate from Marseille, France. Antimicrob Agents Chemother. 2017;61:e00356–17.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Morales-León F, Lima CA, González-Rocha G, Opazo-Capurro A, Bello-Toledo H. Colistin Heteroresistance among Extended Spectrum β-lactamases-Producing Klebsiella pneumoniae. Microorganisms 2020;8:E1279.

    Article  PubMed  Google Scholar 

  24. Cheong HS, Kim SY, Wi YM, Peck KR, Ko KS. Colistin Heteroresistance in Klebsiella Pneumoniae Isolates and Diverse Mutations of PmrAB and PhoPQ in Resistant Subpopulations. J Clin Med. 2019;8:1444.

    Article  CAS  PubMed Central  Google Scholar 

  25. Li J, et al. Emergence of polymyxin B-heteroresistant hypervirulent Klebsiella pneumoniae from an individual in the community with asymptomatic bacteriuria. BMC Microbiol. 2022;22:47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Band VI, et al. Carbapenem-Resistant Klebsiella pneumoniae Exhibiting Clinically Undetected Colistin Heteroresistance Leads to Treatment Failure in a Murine Model of Infection. mBio. 2018;9:e02448–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liao W, et al. Resistance and Heteroresistance to Colistin in Escherichia coli Isolates from Wenzhou, China. Infect Drug Resist. 2020;13:3551–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Band VI, et al. Antibiotic failure mediated by a resistant subpopulation in Enterobacter cloacae. Nat Microbiol. 2016;1:16053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Winfield MD, Groisman EA. Phenotypic differences between Salmonella and Escherichia coli resulting from the disparate regulation of homologous genes. PNAS. 2004;101:17162–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guckes KR, et al. Signaling by two-component system noncognate partners promotes intrinsic tolerance to polymyxin B in uropathogenic Escherichia coli. Sci Signal. 2017;10:eaag1775.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yang B, et al. Identification of novel PhoP-PhoQ regulated genes that contribute to polymyxin B tolerance in Pseudomonas aeruginosa. Microorganisms. 2021;9:344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ryan RP, et al. Interspecies signalling via the Stenotrophomonas maltophilia diffusible signal factor influences biofilm formation and polymyxin tolerance in Pseudomonas aeruginosa. Mol Microbiol. 2008;68:75–86.

    Article  CAS  PubMed  Google Scholar 

  33. Cui P, et al. Disruption of membrane by colistin kills uropathogenic Escherichia coli persisters and enhances killing of other antibiotics. Antimicrob Agents Chemother. 2016;60:6867–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Baek MS, Chung ES, Jung DS, Ko KS. Effect of colistin-based antibiotic combinations on the eradication of persister cells in Pseudomonas aeruginosa. J Antimicrob Chemother. 2020;75:917–24.

    Article  CAS  PubMed  Google Scholar 

  35. Kashyap S, Kaur S, Sharma P, Capalash N. Combination of colistin and tobramycin inhibits persistence of Acinetobacter baumannii by membrane hyperpolarization and down-regulation of efflux pumps. Microbes Infect. 2021;23:104795.

    Article  CAS  PubMed  Google Scholar 

  36. Niu H, et al. Identification of Anti-Persister Activity against Uropathogenic Escherichia coli from a Clinical Drug Library. Antibiotics. 2015;4:179–87.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Brown P, Dawson MJ. Development of new polymyxin derivatives for multi-drug resistant Gram-negative infections. J Antibiot. 2017;70:386–94.

    Article  CAS  Google Scholar 

  38. Eckburg PB, et al. Safety, tolerability, pharmacokinetics, and drug interaction potential of SPR741, an intravenous potentiator, after single and multiple ascending doses and when combined with β-Lactam antibiotics in healthy subjects. Antimicrob Agents Chemother. 2019;63:e00892–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Butler MS, Paterson DL. Antibiotics in the clinical pipeline in October 2019. J Antibiot. 2020;73:329–64.

    Article  CAS  Google Scholar 

  40. Spero Therapeutics. Study to Assess the Intrapulmonary Pharmacokinetics of SPR206 in Healthy Volunteers. Clinical Trial Identifier NCT04868292. 2021. https://www.bolderscience.com/trial/nct04868292/.

  41. Spero Therapeutics. 2021. Phase 1 Study of PK and Safety of SPR206 in Subjects With Various Degrees Of Renal Function. Clinical Trial Identifier NCT04865393.

  42. Spero Therapeutics. A First in Human Study of the Safety and Tolerability of Single and Multiple Doses of SPR206 in Healthy Volunteers. Clinical Trial Identifier NCT03792308. 2018. https://www.bolderscience.com/trial/nct03792308/

  43. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test: proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek. 1993;64:253–60.

    Article  CAS  PubMed  Google Scholar 

  44. Jones TSG. The chemical nature of aerosporin. Biochem J. 1948;42:xxxv.

    CAS  PubMed  Google Scholar 

  45. Jones TSG. The chemical basis for the classification of the polymyxins. Biochem J. 1948;43:xxvi.

    CAS  PubMed  Google Scholar 

  46. Jones TSG. Chemical evidence for the multiplicity of antibiotics produced by Bacillus polymyxa. Ann N. Y Acad Sci. 1949;51:909–16.

    Article  CAS  PubMed  Google Scholar 

  47. Brownlee G, Jones TSG. The polymyxins; a related series of antibiotics derived from B. polymyxa. Biochem J. 1948;43:xxv.

    CAS  PubMed  Google Scholar 

  48. Shepherd RG, et al. Chemical studies on polymyxin; isolation and preliminary purification. J Am Chem Soc. 1948;70:3771–4.

    Article  CAS  PubMed  Google Scholar 

  49. White HJ, Alverson CM, Baker MJ, Jackson ER. Comparative biological studies of Polymyxin and “Aerosporin. Ann N. Y Acad Sci. 1949;51:879–90.

    Article  CAS  PubMed  Google Scholar 

  50. Brownlee G, Bushby SRM, Short EI. Comparative biological studies of Polymyxin A and Polymyxin D. Ann N. Y Acad Sci. 1949;51:891–6.

    Article  CAS  PubMed  Google Scholar 

  51. Bell PH, et al. Chemical studies on polymyxin: comparison with “Aerosporin. Ann N. Y Acad Sci. 1949;51:897–908.

    Article  CAS  PubMed  Google Scholar 

  52. Stansly PG, Brownlee G. Nomenclature of polymyxin antibiotics. Nature. 1949;163:611–611.

    Article  CAS  PubMed  Google Scholar 

  53. Brownlee G. Antibiotics derived from Bacillus Polymyxa. Ann N. Y Acad Sci. 1949;51:875–8.

    Article  CAS  PubMed  Google Scholar 

  54. Koyama Y, Kurosasa A, Tsuchiya A, Takakuta K. A new antibiotic ‘colistin’ produced by spore-forming soil bacteria. J Antibiot. 1950;3:457–8.

    Google Scholar 

  55. Wilkinson S. Identity of colistin and polymyxin E. Lancet. 1963;281:922–3.

    Article  Google Scholar 

  56. Suzuki T, Hayashi K, Fujikawa K, Tsukamoto K. The chemical structure of polymyxin E: the identities of polymyxin E1 with colistin A and of polymyxin E2 with colistin B. J Biochem. 1965;57:226–7.

    Article  CAS  PubMed  Google Scholar 

  57. Langendries S, Goormachtig S. Paenibacillus polymyxa, a jack of all trades. Environ Microbiol. 2021;23:5659–69.

    Article  CAS  PubMed  Google Scholar 

  58. Stansly PG. The polymyxins: a review and assessment. Am J Med. 1949;7:807–18.

    Article  CAS  PubMed  Google Scholar 

  59. Clifford HE, Stewart GT. Intraventricular administration of a new derivative of polymyxin B in menningitis due to P. Pyogyanea. Lancet. 1961;278:177–80.

    Article  Google Scholar 

  60. Ross S, Puig JR, Zaremba EA. Colistin: some preliminary laboratory and clinical observations in specific gastroenteritis in infants and children. Antibiot Annu. 1959;7:89–100.

    PubMed  Google Scholar 

  61. Nation RL, et al. Framework for optimisation of the clinical use of colistin and polymyxin B: the Prato polymyxin consensus. Lancet Infect Dis. 2015;15:225–34.

    Article  CAS  PubMed  Google Scholar 

  62. Falagas ME, Kasiakou SK, Saravolatz LD. Colistin: the revival of polymyxins for the management of multidrug-resistant Gram-negative bacterial infections. Clin Infect Dis. 2005;40:1333–41.

    Article  CAS  PubMed  Google Scholar 

  63. Brown JM, Dorman DC, Roy LP. Acute renal failure due to overdosage of colistin. Med J Aust. 1970;2:923–4.

    Article  CAS  PubMed  Google Scholar 

  64. Koch-Weser J. Adverse effects of sodium colistimethate: manifestations and specific reaction rates during 317 courses of therapy. Ann Intern Med. 1970;72:857.

    Article  CAS  PubMed  Google Scholar 

  65. Ryan KJ. Colistimethate toxicity. Report of a fatal case in a previously healthy child. JAMA. 1969;207:2099–101.

    Article  CAS  PubMed  Google Scholar 

  66. Duncan DA. Colistin toxicity. Neuromuscular and renal manifestations. Two cases treated by hemodialysis. Minn Med. 1973;56:31–5.

    CAS  PubMed  Google Scholar 

  67. Wolinsky E, Hines JD. Neurotoxic and nephrotoxic effects of colistin in patients with renal disease. N. Engl J Med. 1962;266:759–62.

    Article  CAS  PubMed  Google Scholar 

  68. Price DJE, Graham DI. Effects of large doses of colistin sulphomethate sodium on renal function. BMJ. 1970;4:525–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lindesmith LA. Reversible respiratory paralysis associated with polymyxin therapy. Ann Intern Med. 1968;68:318.

    Article  CAS  PubMed  Google Scholar 

  70. Nation RL, Li J. Colistin in the 21st century. Curr Opin Infect. 2009;22:535–43.

    Article  CAS  Google Scholar 

  71. Conway SP, et al. Intravenous colistin sulphomethate in acute respiratory exacerbations in adult patients with cystic fibrosis. Thorax 1997;52:987–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ledson MJ, Gallagher MJ, Cowperthwaite C, Convery RP, Walshaw MJ. Four years’ experience of intravenous colomycin in an adult cystic fibrosis unit. Eur Respir J. 1998;12:592–4.

    Article  CAS  PubMed  Google Scholar 

  73. Cunningham S. Short report: Bronchoconstriction following nebulised colistin in cystic fibrosis. Arch Dis Child. 2001;84:432–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jensen T, et al. Colistin inhalation therapy in cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection. J Antimicrob Chemother. 1987;19:831–8.

    Article  CAS  PubMed  Google Scholar 

  75. Wertheim H, et al. Global survey of polymyxin use: a call for international guidelines. J Glob Antimicrob Resist. 2013;1:131–4.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Tsuji BT, et al. International consensus guidelines for the optimal use of the polymyxins: endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti‐infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy. 2019;39:10–39.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Falagas ME, Kasiakou SK. Toxicity of polymyxins: a systematic review of the evidence from old and recent studies. Crit Care. 2006;10:R27.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Vaara M, et al. A novel polymyxin derivative that lacks the fatty acid tail and carries only three positive charges has strong synergism with agents excluded by the intact outer membrane. Antimicrob Agents Chemother. 2010;54:3341–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vaara M, et al. Novel polymyxin derivatives carrying only three positive charges are effective antibacterial agents. Antimicrob Agents Chemother. 2008;52:3229–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Brown P, et al. Design of next generation polymyxins with lower toxicity: the discovery of SPR206. ACS Infect Dis. 2019;5:1645–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Stokniene J, et al. Bi-functional alginate oligosaccharide–polymyxin conjugates for improved treatment of multidrug-resistant Gram-negative bacterial infections. Pharmaceutics. 2020;12:1080.

    Article  CAS  PubMed Central  Google Scholar 

  82. Gallardo-Godoy A, et al. Structure-function studies of polymyxin B lipononapeptides. Molecules 2019;24:553.

    Article  PubMed Central  Google Scholar 

  83. Velkov T, Roberts KD Discovery of novel polymyxin-like antibiotics In: Li J, Nation RL, Kaye KS, editors. Polymyxin Antibiotics: From Laboratory Bench to Bedside, Vol 1145. Cham, Switzerland: Springer International Publishing; 2019. p. 343–62.

  84. Velkov T, et al. Teaching ‘old’ polymyxins new tricks: new-generation lipopeptides targeting Gram-negative ‘superbugs. ACS Chem Biol. 2014;9:1172–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhao J, et al. Transcriptomic analysis of the activity of a novel polymyxin against Staphylococcus aureus. mSphere. 2016;1:e00119–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Trimble MJ, Mlynárčik P, Kolář M, Hancock REW. Polymyxin: alternative mechanisms of action and resistance. Cold Spring Harb Perspect Med. 2016;6:a025288.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Vaara M. Polymyxins and their potential next generation as therapeutic antibiotics. Front Microbiol. 2019;10:1689.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Yu Z, Qin W, Lin J, Fang S, Qiu J. Antibacterial mechanisms of polymyxin and bacterial resistance. Biomed Res Int. 2015;2015:1–11.

    Google Scholar 

  89. Rabanal F, Cajal Y. Recent advances and perspectives in the design and development of polymyxins. Nat Prod Rep. 2017;34:886–908.

    Article  CAS  PubMed  Google Scholar 

  90. Pristovšek P, Kidrič J. Solution structure of polymyxins B and E and effect of binding to lipopolysaccharide: an NMR and molecular modeling study. J Med Chem. 1999;42:4604–13.

    Article  PubMed  Google Scholar 

  91. Yuan Y, et al. Control of the polymyxin analog ratio by domain swapping in the nonribosomal peptide synthetase of Paenibacillus polymyxa. J Ind Microbiol Biotechnol. 2020;47:551–62.

    Article  CAS  PubMed  Google Scholar 

  92. Felnagle EA, et al. Nonribosomal Peptide Synthetases Involved in the Production of Medically Relevant Natural Products. Mol Pharmaceutics. 2008;5:191–211.

    Article  CAS  Google Scholar 

  93. Thibaut D, et al. Purification of peptide synthetases involved in pristinamycin I biosynthesis. J Bacteriol. 1997;179:697–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Choi S-K, et al. Identification of a polymyxin synthetase gene cluster of Paenibacillus polymyxa and heterologous expression of the gene in Bacillus subtilis. J Bacteriol. 2009;191:3350–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Miller BR, Gulick AM. Structural biology of non-ribosomal peptide synthetases. Methods Mol Biol. 2016;1401:3–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Izoré T, et al. Structures of a non-ribosomal peptide synthetase condensation domain suggest the basis of substrate selectivity. Nat Commun. 2021;12:2511.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Galea CA, et al. Functional Characterization of the Unique Terminal Thioesterase Domain from Polymyxin Synthetase. Biochemistry 2017;56:657–68.

    Article  CAS  PubMed  Google Scholar 

  98. Zhong L, et al. Engineering and elucidation of the lipoinitiation process in nonribosomal peptide biosynthesis. Nat Commun. 2021;12:296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tambadou F, et al. Characterization of the colistin (polymyxin E1 and E2) biosynthetic gene cluster. Arch Microbiol. 2015;197:521–32.

    Article  CAS  PubMed  Google Scholar 

  100. Galea CA, et al. Characterization of the polymyxin D synthetase biosynthetic cluster and product profile of Paenibacillus polymyxa ATCC 10401. J Nat Prod. 2017;80:1264–74.

    Article  CAS  PubMed  Google Scholar 

  101. Shaheen M, Li J, Ross AC, Vederas JC, Jensen SE. Paenibacillus polymyxa PKB1 Produces Variants of Polymyxin B-Type Antibiotics. Chem Biol. 2011;18:1640–8.

    Article  CAS  PubMed  Google Scholar 

  102. Niu B, et al. Polymyxin P is the active principle in suppressing phytopathogenic Erwinia spp. by the biocontrol rhizobacterium Paenibacillus polymyxa M-1. BMC Microbiol. 2013;13:137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Martin NI, et al. Isolation, structural characterization, and properties of mattacin (polymyxin M), a cyclic peptide antibiotic produced by Paenibacillus kobensis M. J Biol Chem. 2003;278:13124–32.

    Article  CAS  PubMed  Google Scholar 

  104. Landman D, Georgescu C, Martin DA, Quale J. Polymyxins revisited. Clin Microbiol Rev. 2008;21:449–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Poirel L, Jayol A, Nordmann P. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin Microbiol Rev. 2017;30:557–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Schindler M, Osborn MJ. Interaction of divalent cations and polymyxin B with lipopolysaccharide. Biochemistry 1979;18:4425–30.

    Article  CAS  PubMed  Google Scholar 

  107. Hancock REW, et al. Cationic peptides: a class of antibiotics able to access the self-promoted uptake pathway across the Pseudomonas aeruginosa outer membrane. In: Molecular Biology of Pseudomonads. Washington, DC: ASM Press; 1996. p. 441–50.

  108. Sabnis A, et al. Colistin kills bacteria by targeting lipopolysaccharide in the cytoplasmic membrane. eLife. 2021;10:e65836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Okuda S, Sherman DJ, Silhavy TJ, Ruiz N, Kahne D. Lipopolysaccharide transport and assembly at the outer membrane: the PEZ model. Nat Rev Microbiol. 2016;14:337–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sperandeo P, et al. Functional Analysis of the Protein Machinery Required for Transport of Lipopolysaccharide to the Outer Membrane of Escherichia coli. J Bacteriol. 2008;190:4460–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Werneburg M, et al. Inhibition of Lipopolysaccharide Transport to the Outer Membrane in Pseudomonas aeruginosa by Peptidomimetic Antibiotics. ChemBioChem. 2012;13:1767–75.

    Article  CAS  PubMed  Google Scholar 

  112. Mogi T, et al. Polymyxin B identified as an inhibitor of alternative NADH Dehydrogenase and Malate: Quinone Oxidoreductase from the Gram-positive bacterium Mycobacterium smegmatis. J Biochem. 2009;146:491–9.

    Article  CAS  PubMed  Google Scholar 

  113. Pamp SJ, Gjermansen M, Johansen HK, Tolker-Nielsen T. Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Mol Microbiol. 2008;68:223–40.

    Article  CAS  PubMed  Google Scholar 

  114. McCall IC, Shah N, Govindan A, Baquero F, Levin BR. Antibiotic Killing of Diversely Generated Populations of Nonreplicating Bacteria. Antimicrob Agents Chemother. 2019;63:13.

    Article  Google Scholar 

  115. Yin J, et al. Mechanisms of bactericidal action and resistance of polymyxins for Gram-positive bacteria. Appl Microbiol Biotechnol. 2020;104:3771–80.

    Article  CAS  PubMed  Google Scholar 

  116. Rudilla H, et al. Novel synthetic polymyxins kill Gram-positive bacteria. J Antimicrob Chemother. 2018;73:3385–90.

    CAS  PubMed  Google Scholar 

  117. Velkov T, Thompson PE, Nation RL, Li J. Structure−activity relationships of polymyxin antibiotics. J Med Chem. 2010;53:1898–916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. de Visser PC, et al. Solid-phase synthesis of polymyxin B1 and analogues via a safety-catch approach: synthesis of polymyxin B1 and analogues. Pept Res. 2003;61:298–306.

    Article  Google Scholar 

  119. Gallardo-Godoy A, et al. Activity and predicted nephrotoxicity of synthetic antibiotics based on polymyxin B. J Med Chem. 2016;59:1068–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lu S, Walters G, Parg R, Dutcher JR. Nanomechanical response of bacterial cells to cationic antimicrobial peptides. Soft Matter. 2014;10:1806–15.

    Article  CAS  PubMed  Google Scholar 

  121. Ofek I, et al. Antibacterial synergism of polymyxin B nonapeptide and hydrophobic antibiotics in experimental gram-negative infections in mice. Antimicrob Agents Chemother. 1994;38:374–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Viljanen P, Vaara M. Susceptibility of gram-negative bacteria to polymyxin B nonapeptide. Antimicrob Agents Chemother. 1984;25:701–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bhattacharjya S, David SA, Mathan VI, Balaram P. Polymyxin B nonapeptide: Conformations in water and in the lipopolysaccharide-bound state determined by two-dimensional NMR and molecular dynamics. Biopolymers. 1997;41:251–65.

    Article  CAS  Google Scholar 

  124. Nang SC, Li J, Velkov T. The rise and spread of mcr plasmid-mediated polymyxin resistance. Crit Rev Microbiol. 2019;45:131–61.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Huttner B, et al. Drugs of Last Resort? The Use of Polymyxins and Tigecycline at US Veterans Affairs Medical Centers, 2005-2010. PLOS ONE. 2012;7:e36649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Olaitan AO, Morand S, Rolain J-M. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol. 2014;5:643.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Balaban NQ, et al. Definitions and guidelines for research on antibiotic persistence. Nat Rev Microbiol. 2019;17:441–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. El-Halfawy OM, Valvano MA. Antimicrobial heteroresistance: an emerging field in need of clarity. Clin Microbiol Rev. 2015;28:191–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Moffatt JH, et al. Colistin resistance in Acinetobacter baumannii Is mediated by complete loss of lipopolysaccharide production. Antimicrob Agents Chemother. 2010;54:4971–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Raetz CRH, Reynolds CM, Trent MS, Bishop RE. Lipid A modification systems in Gram-negative bacteria. Annu Rev Biochem. 2007;76:295–329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Berglund B. Acquired resistance to colistin via chromosomal and plasmid-mediated mechanisms in Klebsiella pneumoniae. Infect Microbes Dis. 2019;1:10–19.

    Article  CAS  Google Scholar 

  132. Jayol A, et al. Resistance to colistin associated with a single amino acid change in protein PmrB among Klebsiella pneumoniae isolates of worldwide origin. Antimicrob Agents Chemother. 2014;58:4762–6.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Liu Y-Y, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16:161–8.

    Article  PubMed  Google Scholar 

  134. Olaitan AO, et al. Worldwide emergence of colistin resistance in Klebsiella pneumoniae from healthy humans and patients in Lao PDR, Thailand, Israel, Nigeria and France owing to inactivation of the PhoP/PhoQ regulator mgrB: an epidemiological and molecular study. Int J Antimicrob Agents. 2014;44:500–7.

    Article  CAS  PubMed  Google Scholar 

  135. Cannatelli A, Santos-Lopez A, Giani T, Gonzalez-Zorn B, Rossolini GM. Polymyxin Resistance Caused by mgrB Inactivation Is Not Associated with Significant Biological Cost in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2015;59:2898–2900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Aires CAM, Pereira PS, Asensi MD, Carvalho-Assef APD. mgrB Mutations Mediating Polymyxin B Resistance in Klebsiella pneumoniae Isolates from Rectal Surveillance Swabs in Brazil. Antimicrob Agents Chemother. 2016;60:6969–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lesho E, et al. Emergence of Colistin-Resistance in Extremely Drug-Resistant Acinetobacter baumannii Containing a Novel pmrCAB Operon During Colistin Therapy of Wound Infections. J Infect Dis. 2013;208:1142–51.

    Article  CAS  PubMed  Google Scholar 

  138. Wösten MMSM, Kox LFF, Chamnongpol S, Soncini FC, Groisman EA. A Signal Transduction System that Responds to Extracellular Iron. Cell. 2000;103:113–25.

    Article  PubMed  Google Scholar 

  139. Kox LFF, Wösten MMSM, Groisman EA. A small protein that mediates the activation of a two-component system by another two-component system. EMBO J. 2000;19:1861–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Véscovi EG, Soncini FC, Groisman EA. Mg2+ as an Extracellular Signal: Environmental Regulation of Salmonella Virulence. Cell 1996;84:165–74.

    Article  Google Scholar 

  141. Phan M-D, et al. Modifications in the pmrB gene are the primary mechanism for the development of chromosomally encoded resistance to polymyxins in uropathogenic Escherichia coli. J Antimicrob Chemother. 2017;72:2729–36.

    Article  CAS  PubMed  Google Scholar 

  142. Lippa AM, Goulian M. Feedback Inhibition in the PhoQ/PhoP Signaling System by a Membrane Peptide. PLOS Genet. 2009;5:e1000788.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Simpson BW, Trent MS. Pushing the envelope: LPS modifications and their consequences. Nat Rev Microbiol. 2019;17:403–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wang R, et al. The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nat Commun. 2018;9:1179.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Snesrud E, et al. A Model for Transposition of the Colistin Resistance Gene mcr-1 by ISApl1. Antimicrob Agents Chemother. 2016;60:6973–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Carroll LM, et al. Identification of novel mobilized colistin resistance gene mcr-9 in a multidrug-resistant, colistin-susceptible Salmonella enterica serotype typhimurium isolate. mBio. 2019;10:e00853–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Skov RL, Monnet DL. Plasmid-mediated colistin resistance (mcr-1 gene): three months later, the story unfolds. Eur Surveill. 2016;21:30155.

    Article  Google Scholar 

  148. Wang C, et al. Identification of novel mobile colistin resistance gene mcr-10. Emerg Microbes Infect. 2020;9:508–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Xavier BB, et al. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Eur Surveill. 2016;21:30280.

    Article  Google Scholar 

  150. Yin W, et al. Novel Plasmid-Mediated Colistin Resistance Gene mcr-3 in Escherichia coli. mBio. 2017;8:e00543–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Carattoli A, et al. Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Eur Surveill. 2017;22:30589.

    Article  Google Scholar 

  152. Borowiak M, et al. Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi B. J Antimicrob Chemother. 2017;72:3317–24.

    Article  CAS  PubMed  Google Scholar 

  153. AbuOun M, et al. mcr-1 and mcr-2 (mcr-6.1) variant genes identified in Moraxella species isolated from pigs in Great Britain from 2014 to 2015. J Antimicrob Chemother. 2017;72:2745–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Yang Y-Q, Li Y-X, Lei C-W, Zhang A-Y, Wang H-N. Novel plasmid-mediated colistin resistance gene mcr-7.1 in Klebsiella pneumoniae. J Antimicrob Chemother. 2018;73:1791–5.

    Article  CAS  PubMed  Google Scholar 

  155. Wang X, et al. Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae. Emerg Micro Infect. 2018;7:1–9.

    Article  Google Scholar 

  156. Zhao Q, et al. Clinical Impact of Colistin Banning in Food Animal on mcr-1-Positive Enterobacteriaceae in Patients From Beijing, China, 2009-2019: A Long-Term Longitudinal Observational Study. Front Microbiol. 2022;13:826624.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Majewski P, et al. Plasmid Mediated mcr-1.1 Colistin-Resistance in Clinical Extraintestinal Escherichia coli Strains Isolated in Poland. Front Microbiol. 2021;12:547020.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Farzana R, et al. Emergence of Mobile Colistin Resistance (mcr-8) in a Highly Successful Klebsiella pneumoniae Sequence Type 15 Clone from Clinical Infections in Bangladesh. mSphere. 2020;5:e00023–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Yang Q, et al. Balancing mcr-1 expression and bacterial survival is a delicate equilibrium between essential cellular defence mechanisms. Nat Commun. 2017;8:2054.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Feng S, et al. MCR-1-dependent lipid remodelling compromises the viability of Gram-negative bacteria. Emerg Microbes Infect. 2022;11:1236–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. MacNair CR, et al. Overcoming mcr-1 mediated colistin resistance with colistin in combination with other antibiotics. Nat Commun. 2018;9:458.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Brennan-Krohn T, Pironti A, Kirby JE. Synergistic activity of colistin-containing combinations against colistin-resistant Enterobacteriaceae. Antimicrob Agents Chemother. 2018;62:e00873–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Tzeng Y-L, et al. Cationic antimicrobial peptide resistance in Neisseria meningitidis. J Bacteriol. 2005;187:5387–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Yin J, et al. Inactivation of polymyxin by hydrolytic mechanism. Antimicrob Agents Chemother. 2016;63:e02378–18.

    Google Scholar 

  165. Ito-Kagawa M, Koyama Y. Selective cleavage of a peptide antibiotic, colistin by colistinase. J Antibiot. 1980;33:1551–5.

    Article  CAS  Google Scholar 

  166. Hamel M, Rolain J-M, Baron SA. The history of colistin resistance mechanisms in bacteria: progress and challenges. Microorganisms. 2021;9:442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sherman EX, Wozniak JE, Weiss DS Methods to Evaluate Colistin Heteroresistance in Acinetobacter baumannii In: Biswas I, Rather PN, editors. Acinetobacter baumannii: Methods and Protocols. Vol 1946. New York, NY: Springer; 2019. p. 39–50.

  168. Mashaly GE-S, Mashaly ME-S. Colistin-heteroresistance in carbapenemase-producing Enterobacter species causing hospital-acquired infections among Egyptian patients. J Glob Antimicrob Resist. 2021;24:108–13.

    Article  CAS  PubMed  Google Scholar 

  169. Band VI, et al. Colistin Heteroresistance Is Largely Undetected among Carbapenem-Resistant Enterobacterales in the United States. mBio. 2021;12:e02881–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Hjort K, Nicoloff H, Andersson DI. Unstable tandem gene amplification generates heteroresistance (variation in resistance within a population) to colistin in Salmonella enterica. Mol Microbiol. 2016;102:274–89.

    Article  CAS  PubMed  Google Scholar 

  171. Nicoloff H, Hjort K, Levin BR, Andersson DI. The high prevalence of antibiotic heteroresistance in pathogenic bacteria is mainly caused by gene amplification. Nat Microbiol. 2019;4:504–14.

    Article  CAS  PubMed  Google Scholar 

  172. Thaipisuttikul I, et al. A divergent Pseudomonas aeruginosa palmitoyltransferase essential for cystic fibrosis-specific lipid A. Mol Microbiol. 2014;91:158–74.

    Article  CAS  PubMed  Google Scholar 

  173. Pompilio A, et al. Cooperative pathogenicity in cystic fibrosis: Stenotrophomonas maltophilia modulates Pseudomonas aeruginosa virulence in mixed biofilm. Front Microbiol. 2015;6:951.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Zusman O, et al. Systematic review and meta-analysis of in vitro synergy of polymyxins and carbapenems. Antimicrob Agents Chemother. 2013;57:5104–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Berditsch M, et al. Synergistic effect of membrane-active peptides polymyxin B and gramicidin S on multidrug-resistant strains and biofilms of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2015;59:5288–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Aye SM, et al. Polymyxin triple combinations against polymyxin-resistant, multidrug-resistant, KPC-producing Klebsiella pneumoniae. Antimicrob Agents Chemother. 2020;64:e00246–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Ma X, et al. Ceftazidime/avibactam Improves the Antibacterial Efficacy of Polymyxin B Against Polymyxin B Heteroresistant KPC-2-Producing Klebsiella pneumoniae and Hinders Emergence of Resistant Subpopulation in vitro. Front Microbiol. 2019;10:2029.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Tian Y, Zhang Q, Wen L, Chen J. Combined effect of Polymyxin B and Tigecycline to overcome Heteroresistance in Carbapenem-Resistant Klebsiella pneumoniae. Microbiol Spectr. 2021;9:e00152–21.

    Article  CAS  PubMed Central  Google Scholar 

  179. Band VI, et al. Antibiotic combinations that exploit heteroresistance to multiple drugs effectively control infection. Nat Microbiol. 2019;4:1627–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Duwe AK, Rupar CA, Horsman GB, Vas SI. In vitro cytotoxicity and antibiotic activity of polymyxin B nonapeptide. Antimicrob Agents Chemother. 1986;30:340–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Zabawa TP, Pucci MJ, Parr TR, Lister T. Treatment of Gram-negative bacterial infections by potentiation of antibiotics. Curr Opin Microbiol. 2016;33:7–12.

    Article  CAS  PubMed  Google Scholar 

  182. Nang SC, Azad MAK, Velkov T, Zhou QTony, Li J. Rescuing the last-line polymyxins: achievements and challenges. Pharm Rev. 2021;73:679–728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Zurawski DV, et al. SPR741, an antibiotic adjuvant, potentiates the in vitro and in vivo activity of rifampin against clinically relevant extensively drug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2017;61:e01239–17.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Zavascki AP, Nation RL. Nephrotoxicity of Polymyxins: Is There Any Difference between Colistimethate and Polymyxin B? Antimicrob Agents Chemother. 2017;61:e02319–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Bruss J, et al. Single- and multiple-ascending-dose study of the safety, tolerability, and pharmacokinetics of the polymyxin derivative SPR206. Antimicrob Agents Chemother. 2021;65:e0073921.

    Article  PubMed  Google Scholar 

  186. Vaara M, Vaara T. Sensitization of Gram-negative bacteria to antibiotics and complement by a nontoxic oligopeptide. Nature 1983;303:526–8.

    Article  CAS  PubMed  Google Scholar 

  187. Nikaido H. Molecular Basis of Bacterial Outer Membrane Permeability Revisited. Microbiol Mol Biol Rev. 2003;67:593–656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Kim S, et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021;49:D1388–D1395.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the 250th Anniversary Fund for Innovation in Undergraduate Education, the Program for Community Engaged Scholarship, and the Council on Science and Technology at Princeton University (MPB). The content is solely the responsibility of the authors and does not necessarily represent the views of the funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

SC, AMH, BWS, KJS, NSE, GL, DMS, XW, and MPB wrote and revised the manuscript.

Corresponding author

Correspondence to Mark P. Brynildsen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiu, S., Hancock, A.M., Schofner, B.W. et al. Causes of polymyxin treatment failure and new derivatives to fill the gap. J Antibiot 75, 593–609 (2022). https://doi.org/10.1038/s41429-022-00561-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-022-00561-3

This article is cited by

Search

Quick links