Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bioactive ambuic acid congeners from endophytic fungus Pestalotiopsis trachicarpicola SC-J551

Abstract

New ambuic acid derivatives, pestallic acids R–V (15), together with ambuic acid (6), were isolated from the endophytic fungus Pestalotiopsis trachicarpicola SC-J551 derived from the fern Blechnum orientale L., of which compound 2, being racemic, was separated to two optically pure enantiomers (+)-2 and (−)-2. The structures including absolute configurations of these new compounds were elucidated by extensive spectroscopic analysis and theoretical simulations of their ECD spectra and 13C NMR chemical shifts. Compounds 1 and 3 exhibited cytotoxicity against human carcinoma A549, HeLa, HepG2, and MCF-7 cells (IC50: 3.6–12.5 μM) and compound 3 was also active against Staphylococcus aureus and MRSA (MIC = 20 μg ml−1). Compound (±)-2 showed inhibitory activity against LPS-induced NO release (IC50 = 21.1 μM) and t-BHP-induced ROS production (IC50 = 8.5 μM) in RAW264.7 macrophages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tan R-X, Zou W-X. Endophytes: a rich source of functional metabolites. Nat Prod Rep. 2001;18:448–59.

    Article  CAS  PubMed  Google Scholar 

  2. Gupta S, Chaturvedi P, Kulkarni MG, Van Staden J. A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnol Adv. 2020;39:107462.

    Article  CAS  PubMed  Google Scholar 

  3. Gao H, Li G, Lou H-X. Structural diversity and biological activities of novel secondary metabolites from endophytes. Molecules. 2018;23:646.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Deshmukh SK, Prakash V, Ranjan N. Recent advances in the discovery of bioactive metabolites from Pestalotiopsis. Phytochem Rev. 2017;16:883–920.

    Article  CAS  Google Scholar 

  5. Wu C, Wang Y, Yang Y. Pestalotiopsis diversity: species, dispositions, secondary metabolites, and bioactivities. Molecules. 2022;27:8088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ding G, Li Y, Fu S, Liu S, Wei J, Che Y. Ambuic acid and torreyanic acid derivatives from the endolichenic fungus Pestalotiopsis sp. J Nat Prod. 2009;72:182–6.

    Article  CAS  PubMed  Google Scholar 

  7. Li J, Xie J, Yu F-X, Chen Y-H, Zhao P-J. Pestalotic acids A-I, antibacterial ambuic acid analogues, from a mycoparasite (Pestalotipsis sp. cr014) of Cronartium ribicola. Arch Pharm Res. 2016; https://doi.org/10.1007/s12272-016-0837-2.

  8. Li JY, Harper JK, Grant DM, Tombe BO, Bashyal B, Hess WM, et al. Ambuic acid, a highly functionalized cyclohexenone with antifungal activity from Pestalotiopsis spp. and Monochaetia sp. Phytochemistry. 2001;56:463–8.

    Article  CAS  PubMed  Google Scholar 

  9. Yuan C, Ding G, Wang H-Y, Guo Y-H, Shang H, Ma X-J, et al. Polyketide-terpene hybrid metabolites from an endolichenic fungus Pestalotiopsis sp. BioMed Res Int. 2017;2017:6961928.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhang Q, Luan R, Li H, Liu Y, Liu P, Wang L, et al. Anti-inflammatory action of ambuic acid, a natural product isolated from the solid culture of Pestalotiopsis neglecta, through blocking ERK/JNK mitogen-activated protein kinase signaling pathway. Exp Ther Med. 2018;16:1538–46.

    PubMed  PubMed Central  Google Scholar 

  11. Li C-S, Yang B-J, Turkson J, Cao S. Anti-proliferative ambuic acid derivatives from hawaiian endophytic fungus Pestalotiopsis sp. FT172. Phytochemistry. 2017;140:77–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yu X, Gao Y, Frank M, Mándi A, Kurtán T, Müller WEG, et al. Induction of ambuic acid derivatives by the endophytic fungus Pestalotiopsis lespedezae through an OSMAC approach. Tetrahedron. 2021;79:131876.

    Article  CAS  Google Scholar 

  13. Jiang Z, Wu P, Li H, Xue J, Wei X. Pestalotinones A-D, new benzophenone antibiotics from endophytic fungus Pestalotiopsis trachicarpicola SC-J551. J Antibiot. 2022;75:207–12.

    Article  CAS  Google Scholar 

  14. Friebolin H. Basic One and Two-Dimensional NMR Spectroscopy. 5th ed. Weinheim: Wiley-VCH Verlag GmbH & Co; 2010.

    Google Scholar 

  15. Cen-Pacheco F, Villa-Pulgarin JA, Mollinedo F, Norte M, Daranas AH, Fernández JJ. Cytotoxic oxasqualenoids from the red alga Laurencia viridis. Eur J Med Chem. 2011;46:3302–08.

    Article  CAS  PubMed  Google Scholar 

  16. Wiberg KB, Pratt WE. Effect of halogen substituents on NMR chemical shifts. 13C spectra of bicyclic halides. Tetrahedron Lett. 1978;49:4865–68.

    Article  Google Scholar 

  17. Fu Y, Wu P, Xue J, Wei X. Cytotoxic and antibacterial quinone sesquiterpenes from a Myrothecium fungus. J Nat Prod. 2014;77:1791–9.

    Article  CAS  PubMed  Google Scholar 

  18. Mosmann T. Rapid colorimetric assay for cellular growth and survival-application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.

    Article  CAS  PubMed  Google Scholar 

  19. Shi J-F, Wu P, Jiang Z-H, Wei X-Y. Synthesis and tumor cell growth inhibitory activity of biotinylated annonaceous acetogenins. Eur J Med Chem. 2014;71:219–28.

    Article  CAS  PubMed  Google Scholar 

  20. Cheng X-L, Li H-X, Chen J, Wu P, Xue J-H, Zhou Z-Y, et al. Bioactive diarylheptanoids from Alpinia coriandriodora. Nat Prod Bioprospect. 2021;11:63–72.

    Article  CAS  PubMed  Google Scholar 

  21. Duan F-F, Gao Y, Liu J-J, Liu L, Peng X-G, Ruan H-L. Pseudeurglobosins A–F, six rearranged [11]-chaetoglobosins with immunosuppressive activities from Pseudeurotium bakeri P1-1-1. Org Chem Front. 2021;8:7015–24.

    Article  CAS  Google Scholar 

  22. Li X, Wu P, Li H, Xue J, Xu H, Wei X. Antibacterial and cytotoxic phenyltetracenoid polyketides from Streptomyces morookaense. J Nat Prod. 2021;84:1806–15.

    Article  CAS  PubMed  Google Scholar 

  23. Gao S, Wu P, Xue J, Li H, Wei X. Cytochalasans from the endophytic fungus Diaporthe ueckerae associated with the fern Pteris vittata. Phytochemistry. 2022;202:113295.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mr. Yunfei Yuan, South China Botanical Garden, Chinese Academy of Sciences, for NMR spectroscopic measurements and Ms. Aijun Sun, South China Sea Institute of Oceanology, Chinese Academy of Sciences, for HRESIMS measurements. This work was supported by NSFC grants (Nos. 82073732 and 81872773). Electronic supplementary information (ESI) available on The Journal of Antibiotics website (http://www.nature.com/ja). Computational details, NMR spectra and HR-ESIMS of 15, and HPLC chromatograms of 16 (PDF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Wu or Xiaoyi Wei.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, F., Jiang, Z., Wu, P. et al. Bioactive ambuic acid congeners from endophytic fungus Pestalotiopsis trachicarpicola SC-J551. J Antibiot 77, 21–29 (2024). https://doi.org/10.1038/s41429-023-00674-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-023-00674-3

Search

Quick links