Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Notch activator cyclopiazonic acid induces apoptosis in HL-60 cells through calcineurin activation

Abstract

We screened a library of microbial extracts and compounds library using our constructed assay cells and found pulicatins F (1) and G (2), and cyclopiazonic acid (CPA) (3) as Notch activators. Pulicatin F (1) and (±)-pulicatin G were synthesized and their activities were evaluated. Notch activation of CPA (3) was investigated using Western blot and RT-PCR. CPA (3) increased protein level of HES1 and mRNA expression of HES1. Also, the expression of FMS-like tyrosine kinase 3 (FLT3), which was known to inhibit apoptosis, was also inhibited by CPA (3) addition. The Notch activation by CPA (3) and cytotoxicity against HL-60 were clearly canceled by addition of FK506, which is an inhibitor of calcineurin (CaN). In addition, it was revealed that CPA (3) induced apoptosis in HL-60 cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Andersson ER, Sandberg R, Lendahl U. Notch signaling: simplicity in design, versatility in function. Development. 2011;138:3593–612.

    Article  CAS  PubMed  Google Scholar 

  2. Borggrefe T, Oswald F. The notch signaling pathway: transcriptional regulation at Notch target genes. Cell Mol Life Sci. 2009;66:1631–46.

    Article  CAS  PubMed  Google Scholar 

  3. Chitnis A, Bally-Cuif L. The notch meeting: an odyssey from structure to function. Development. 2016;143:547–53.

    Article  CAS  PubMed  Google Scholar 

  4. Kovall RA, Gebelein B, Sprinzak D, Kopan R. The canonical notch signaling pathway: structural and biochemical insights into shape, sugar, and force. Dev Cell. 2017;41:228–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lobry C, Oh P, Mansour MR, Look AT, Aifantis I. Notch signaling: switching an oncogene to a tumor suppressor. Blood. 2014;123:2451–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Weng AP, Ferrando AA, Lee W, Morris JP 4th, Silverman LB, Sanchez-Irizarry C, Blacklow SC, Look AT, Aster JC. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306:269–71.

    Article  CAS  PubMed  Google Scholar 

  7. Andersson ER, Lendahl U. Therapeutic modulation of Notch signalling — are we there yet? Nat Rev Drug Discov. 2014;13:357–78.

    Article  CAS  PubMed  Google Scholar 

  8. Gojo I, Karp JE. New strategies in acute myelogenous leukemia: leukemogenesis and personalized medicine. Clin Cancer Res. 2014;20:6233–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sakamoto KM, Grant S, Saleiro D, Crispino J, Hijiya N, Giles F, Platanias L, Eklund EA. Targeting novel signaling pathways for resistant acute myeloid leukemia. Mol Genet Metab. 2015;114:397–402.

    Article  CAS  PubMed  Google Scholar 

  10. Kato T, Sakata-Yanagimoto M, Nishikii H, Ueno M, Miyake Y, Yokoyama Y, Asabe Y, Kamada Y, Muto H, Obara N, Suzukawa K, Hasegawa Y, Kitabayashi I, Uchida K, Hirao A, Yagita H, Kageyama R, Chiba S. Hes1 suppresses acute myeloid leukemia development through FLT3 repression. Leukemia. 2015;29:576–85.

    Article  CAS  PubMed  Google Scholar 

  11. Ye Q, Jiang J, Zhan G, Yan W, Huang L, Hu Y, Su H, Tong Q, Yue M, Li H, Yao G, Zhang Y, Li H. Small molecule activation of NOTCH signaling inhibits acute myeloid leukemia. Sci Rep. 2016;6:26510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. LaFoya B, Munroe JA, Albig AR. A comparison of resveratrol and other polyphenolic compounds on Notch activation and endothelial cell activity. PLoS One. 2019;14:e0210607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yoneyama T, Arai MA, Akamine R, Koryudzu K, Sadhu SK, Ahmed F, Itoh M, Okamoto R, Ishibashi M. Notch inhibitors from Calotropis gigantea that induce neuronal differentiation of neural stem cells. J Nat Prod. 2017;80:2453–61.

    Article  CAS  PubMed  Google Scholar 

  14. Arai MA, Akamine R, Tsuchiya A, Yoneyama T, Koyano T, Kowithayakorn T, Ishibashi M. The notch inhibitor cowanin accelerates nicastrin degradation. Sci Rep. 2018;8:5376.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Arai MA, Akamine R, Hayashi N, Koyano T, Kowithayakorn T, Ishibashi M. The notch inhibitors isolated from Nerium indicum. J Nat Prod. 2018;81:1235–40.

    Article  CAS  PubMed  Google Scholar 

  16. Thissera B, Alhadrami HA, Hassan MHA, Hassan HM, Behery FA, Bawazeer M, Yaseen M, Belbahri L, Rateb ME. Induction of cryptic antifungal pulicatin Derivatives from Pantoea Agglomerans by microbial co-culture. Biomolecules. 2020;10:268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fu P, Kong F, Wang Y, Wang Y, Liu P, Zuo G, Zhu W. Antibiotic metabolites from the coral-associated actinomycete Streptomyces sp. OUCMDZ-1703. Chin J Chem. 2013;31:100–4.

    Article  CAS  Google Scholar 

  18. Lin Z, Antemano RR, Hughen RW, Tianero MD, Peraud O, Haygood MG, Concepcion GP, Olivera BM, Light A, Schmidt EW. Pulicatins A-E, neuroactive thiazoline metabolites from cone snail-associated bacteria. J Nat Prod. 2010;73:1922–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stirewalt DL, Radich JP. The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer. 2003;3:650–65.

    Article  CAS  PubMed  Google Scholar 

  20. Lisovsky M, Estrov Z, Zhang X, Consoli U, Sanchez-Williams G, Snell V, Munker R, Goodacre A, Savchenko V, Andreeff M. Flt3 ligand stimulates proliferation and inhibits apoptosis of acute myeloid leukemia cells: regulation of Bcl-2 and Bax. Blood. 1996;88:3987–97.

    Article  CAS  PubMed  Google Scholar 

  21. Seidler MW, Jona I, Vegh M, Martonosi A. Cyclopiazonic acid is a specific inhibitor of the Ca2+-ATPase of Sarcoplasmic Reticulum. J Biol Chem. 1989;264:17816–23.

    Article  CAS  PubMed  Google Scholar 

  22. Kasahara A, Cipolat S, Chen Y, Dorn GW, Scorrano L. Mitochondrial fusion directs cardiomyocyte differentiation via calcineurin and notch signaling. Science. 2013;342:734–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We deeply thank to Prof. Kiyotake Suenaga, Keio University and Prof. Arihiro Iwasaki, Chuo University for measurement of Ca2+ concentration in the cells. This study was supported by a Grant-in-Aid for Scientific Research (B) (21H02639 [MAA]) from the Japan Society for the Promotion of Science (JSPS) and a Grant-in-Aid for Transformative Research Area (A) “Latent Chemical Space” (23H04880 [MAA], 23H04884 [MAA]) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Midori A. Arai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, S., Saito, S., Narushima, Y. et al. Notch activator cyclopiazonic acid induces apoptosis in HL-60 cells through calcineurin activation. J Antibiot 77, 30–38 (2024). https://doi.org/10.1038/s41429-023-00673-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-023-00673-4

Search

Quick links