Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antiviral potency of lupane and oleanane alkynyl-derivatives against human cytomegalovirus and papillomavirus

Abstract

A library of 18 structurally diverse semisynthetic lupane, oleanane, and ursane types triterpenoids, including C19- or C28-(1,2,3-triazolyl)- and aminomethylated derivatives obtained by the «click» reaction with various aromatic and sugar azides or by Mannich reaction with secondary amines, were tested for antiviral activity against HCMV, HSV-1, and HPV-11 types. C28-Triazolyl-derivative with a benzyl substituent of 2,3-indolo-oleanolic acid was the most active against the HCMV virus with EC50 < 0.05 (SI > 81). Lupane 3,28-diacetoxy-triazolyl derivatives with phenyl- and fluorophenyl-fragments possess the highest activity among all screened compounds toward HPV-11 type virus with EC50 values of 2.97 µM and 1.20 μM, SI90 values of 28 and >125, respectively. One can see that modification of triterpenic alkynes to Mannich bases was more efficient in increasing an activity against HSV-1 than their conversion to triazoles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dzubak P, Hajduch M, Vydra D, Hustova A, Kvasnica M, Biedermann D, Markova L, Urban M, Sarek J. Pharmacological activities of natural triterpenoids and their therapeutic implications. Nat Prod Rep. 2006;23:394–411. https://doi.org/10.1039/b515312n.

    Article  CAS  PubMed  Google Scholar 

  2. Salvador JAR, Leal AS, Valdeira AS, Gonçalves BMF, Alho DPS, Figueiredo SAC, Silvestre SM, Mendes VIS. Oleanane-, ursane-, and quinone methide friedelane-type triterpenoid derivatives: recent advances in cancer treatment. Eur J Med Chem. 2017;142:95–130. https://doi.org/10.1016/j.ejmech.2017.07.013.

    Article  CAS  PubMed  Google Scholar 

  3. Isah MB, Ibrahim MA, Mohammed A, Aliyu AB, Masola B, Coetzer TH. A systematic review of pentacyclic triterpenes and their derivatives as chemotherapeutic agents against tropical parasitic diseases. Parasitology. 2016;143:1219–31. https://doi.org/10.1017/S0031182016000718.

    Article  CAS  PubMed  Google Scholar 

  4. Martin DE, Salzwedel K, Allaway GP. Bevirimat: a novel maturation inhibitor for the treatment of HIV-1 infection. Antivir Chem Chemother. 2008;19:107–13. https://doi.org/10.1177/095632020801900301.

    Article  CAS  PubMed  Google Scholar 

  5. Frew Q, Rennekampff HO, Dziewulski P, Moiemen N. BBW-11 Study Group; Zahn T, Hartmann B. Betulin wound gel accelerated healing of superficial partial thickness burns: results of a randomized, intra-individually controlled, phase III trial with 12-months follow-up. Burns. 2019;45:876–90. https://doi.org/10.1016/j.burns.2018.10.019.

    Article  PubMed  Google Scholar 

  6. Xiao S, Tian Z, Wang Y, Si L, Zhang L, Zhou D. Recent progress in the antiviral activity and mechanism study of pentacyclic triterpenoids and their derivatives. Med Res Rev. 2018;38:951–76. https://doi.org/10.1002/med.21484.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lee KH. Discovery and development of natural product-derived chemotherapeutic agents based on a medicinal chemistry approach. J Nat Prod. 2010;73:500–16. https://doi.org/10.1021/np900821e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kashiwada Y, Nagao T, Hashimoto A, Ikeshiro Y, Okabe H, Cosentino LM, Lee KH. Anti-AIDS agents 38. Anti-HIV activity of 3-O-acyl ursolic acid derivatives. J Nat Prod. 2000;63:1619–22. https://doi.org/10.1021/np990633v.

    Article  CAS  PubMed  Google Scholar 

  9. Deng SL, Baglin I, Nour M, Flekhter O, Vita C, Cavé C. Synthesis of ursolic phosphonate derivatives as potential anti-HIV agents. Phosphorus Sulfur Silicon Relat Elem 2007;182:951–67. https://doi.org/10.1080/10426500601088838.

    Article  CAS  Google Scholar 

  10. Gong Y, Raj KM, Luscombe CA, Gadawski I, Tam T, Chu J, Gibson D, Carlson R, Sacks SL. The synergistic effects of betulin with acyclovir against herpes simplex viruses. Antivir Res. 2004;64:127–30. https://doi.org/10.1016/j.antiviral.2004.05.006.

    Article  CAS  PubMed  Google Scholar 

  11. Baltina LA, Flekhter OB, Nigmatullina LR, Boreko EI, Pavlova NI, Nikolaeva SN, Savinova OV, Tolstikov GA. Lupane triterpenes and derivatives with antiviral activity. Bioorg Med Chem Lett. 2003;13:3549–52. https://doi.org/10.1016/s0960-894x(03)00714-5.

    Article  CAS  PubMed  Google Scholar 

  12. Pavlova NI, Savinova OV, Nikolaeva SN, Boreko EI, Flekhter OB. Antiviral activity of betulin, betulinic and betulonic acids against some enveloped and non-enveloped viruses. Fitoterapia. 2003;74:489–92. https://doi.org/10.1016/s0367-326x(03)00123-0.

    Article  CAS  PubMed  Google Scholar 

  13. Kazakova OB, Giniyatullina GV, Yamansarov EY, Tolstikov GA. Betulin and ursolic acid synthetic derivatives as inhibitors of Papilloma virus. Bioorg Med Chem Lett. 2010;20:4088–90. https://doi.org/10.1016/j.bmcl.2010.05.083.

    Article  CAS  PubMed  Google Scholar 

  14. Kazakova OB, Medvedeva NI, Baikova IP, Tolstikov GA, Lopatina TV, Yunusov MS, Zaprutko L. Synthesis of triterpenoid acylates: effective reproduction inhibitors of influenza A (H1N1) and papilloma viruses. Russ J Bioorg Chem. 2010;36:771–8. https://doi.org/10.1134/S1068162010060142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Khusnutdinova EF, Kazakova OB, Lobov AN, Kukovinets OS, Suponitsky KY, Meyers CB, Prichard MN. Synthesis of A-ring quinolones, nine-membered oxolactams and spiroindoles by oxidative transformations of 2,3-indolotriterpenoids. Org Biomol Chem. 2019;17:585–97. https://doi.org/10.1039/c8ob02624f.

    Article  CAS  PubMed  Google Scholar 

  16. Savinova OV, Pavlova NI, Boreko EI. [New betulin derivatives in combination with rimantadine for inhibition of influenza virus reproduction]. Antibiot Khimioter. 2009;54:16–20.

    CAS  PubMed  Google Scholar 

  17. Karagöz AÇ, Leidenberger M, Hahn F, Hampel F, Friedrich O, Marschall M, Kappes B, Tsogoeva SB. Synthesis of new betulinic acid/betulin-derived dimers and hybrids with potent antimalarial and antiviral activities. Bioorg Med Chem. 2019;27:110–5. https://doi.org/10.1016/j.bmc.2018.11.018.

    Article  CAS  PubMed  Google Scholar 

  18. Dinh Ngoc T, Moons N, Kim Y, De Borggraeve W, Mashentseva A, Andrei G, Snoeck R, Balzarini J, Dehaen W. Synthesis of triterpenoid triazine derivatives from allobetulone and betulonic acid with biological activities. Bioorg Med Chem. 2014;22:3292–3300. https://doi.org/10.1016/j.bmc.2014.04.061.

    Article  CAS  PubMed  Google Scholar 

  19. Pohjala L, Alakurtti S, Ahola T, Yli-Kauhaluoma J, Tammela P. Betulin-derived compounds as inhibitors of alphavirus replication. J Nat Prod. 2009;72:1917–26. https://doi.org/10.1021/np9003245.

    Article  CAS  PubMed  Google Scholar 

  20. Spivak AY, Galimshina ZR, Nedopekina DA, Odinokov VN. Synthesis of new C-2 triazole-linked analogs of triterpenoid pentacyclic saponins. Chem Nat Compd. 2018;54:315–23. https://doi.org/10.1007/s10600-018-2331-1.

    Article  CAS  Google Scholar 

  21. Spivak AY, Gubaidullin RR, Galimshina ZR, Nedopekina DA, Odinokov VN. Effective synthesis of novel C(2)-propargyl derivatives of betulinic and ursolic acids and their conjugation with β-D-glucopyranoside azides via click chemistry. Tetrahedron. 2016;72:1249–56. https://doi.org/10.1016/J.TET.2016.01.024.

    Article  CAS  Google Scholar 

  22. Spivak AY, Nedopekina DA, Galimshina ZR, Khalitova RR, Sadretdinova ZR, Gubaidullin RR, Odinokov VN. Click chemistry-assisted synthesis of novel C-2 triazole-linked betulinic acid conjugates with azidothymidine as potential anti-HIV agents. Arkivoc. 2018;VII:1–19. https://doi.org/10.24820/ark.5550190.p010.632.

    Article  CAS  Google Scholar 

  23. Khusnutdinova EF, Bremond P, Petrova AV, Kukovinets OS, Kazakova OB. Synthesis of lupane mono- and bis-C19-(1,2,3-triazolyl)-triterpenoids by “Click” reaction. Lett Org Chem. 2017;14:743–7.

    Article  CAS  Google Scholar 

  24. Pokorny J, Borkova L, Urban M. Click reactions in chemistry of triterpenes—advances towards development of potential therapeutics. Curr Med Chem. 2018;25:636–58. https://doi.org/10.2174/0929867324666171009122612.

    Article  CAS  PubMed  Google Scholar 

  25. Csuk R, Deigner HP. The potential of click reactions for the synthesis of bioactive triterpenes. Bioorg Med Chem Lett. 2019;29:949–58. https://doi.org/10.1016/j.bmcl.2019.02.020.

    Article  CAS  PubMed  Google Scholar 

  26. Yu F, Wang Q, Zhang Z, Peng Y, Qiu Y, Shi Y, Zheng Y, Xiao S, Wang H, Huang X, Zhu L, Chen K, Zhao C, Zhang C, Yu M, Sun D, Zhang L, Zhou D. Development of oleanane-type triterpenes as a new class of HCV entry inhibitors. J Med Chem. 2013;56:4300–4019. https://doi.org/10.1021/jm301910a.

    Article  CAS  PubMed  Google Scholar 

  27. Xiao S, Wang Q, Si L, Shi Y, Wang H, Yu F, Zhang Y, Li Y, Zheng Y, Zhang C, Wang C, Zhang L, Zhou D. Synthesis and anti-HCV entry activity studies of β-cyclodextrin-pentacyclic triterpene conjugates. ChemMedChem. 2014;9:1060–70. https://doi.org/10.1002/cmdc.201300545.

    Article  CAS  PubMed  Google Scholar 

  28. Xiao S, Wang Q, Si L, Zhou X, Zhang Y, Zhang L, Zhou D. Synthesis and biological evaluation of novel pentacyclic triterpene α-cyclodextrin conjugates as HCV entry inhibitors. Eur J Med Chem. 2016;124:1–9. https://doi.org/10.1016/j.ejmech.2016.08.020.

    Article  CAS  PubMed  Google Scholar 

  29. Wang C, Lu L, Na H, Li X, Wang Q, Jiang X, Xu X, Yu F, Zhang T, Li J, Zhang Z, Zheng B, Liang G, Cai L, Jiang S, Liu K. Conjugation of a nonspecific antiviral sapogenin with a specific HIV fusion inhibitor: a promising strategy for discovering new antiviral therapeutics. J Med Chem. 2014;57:7342–54. https://doi.org/10.1021/jm500763m.

    Article  CAS  PubMed  Google Scholar 

  30. Roman G. Mannich bases in medicinal chemistry and drug design. Eur J Med Chem. 2015;89:743–816. https://doi.org/10.1016/j.ejmech.2014.10.076.

    Article  CAS  PubMed  Google Scholar 

  31. Kazakova OB, Medvedeva NI, Tolstikov GA, Kukovinets OS, Yamansarov EY, Spirikhin LV, Gubaidullin AT. Synthesis of terminal acetylenes using POCl3 in pyridine as applied to natural triterpenoids. Mendeleev Commun. 2010;20:234–6. https://doi.org/10.1016/j.mencom.2010.06.018.

    Article  CAS  Google Scholar 

  32. Khusnutdinova EF, Apryshko GN, Petrova AV, Kukovinets OS, Kazakova OB. The synthesis and selective cytotoxicity of new Mannich bases, derivatives of 19- and 28-alkynyltriterpenoids. Russ J Bioorg Chem. 2018;44:123–7. https://doi.org/10.1134/S1068162018010090.

    Article  CAS  Google Scholar 

  33. Khusnutdinova EF, Petrova AV, Kukovinets OS, Kazakova OB. Synthesis and cytotoxicity of 28-N-propargylaminoalkylated 2,3-indolotriterpenic acids. Nat Prod Commun. 2018;13:665–8. https://doi.org/10.1177/1934578X1801300603.

    Article  Google Scholar 

  34. Kazakova O, Tret’yakova E, Baev D. Evaluation of A-azepano-triterpenoids and related derivatives as antimicrobial and antiviral agents. J Antibiot. 2021;74:559–73. https://doi.org/10.1038/s41429-021-00448-9.

    Article  CAS  Google Scholar 

  35. Babaev M, Khusnutdinova E, Lobov A, Galimova Z, Petrova A, Rybalova T, Nguyen HTT, Meyers C, Prichard M, Kazakova O. Allobetulone rearrangement to l8αH,19βH-ursane triterpenoids with antiviral activity. Nat Prod Res. 2022;36:3286–96. https://doi.org/10.1080/14786419.2020.1855159.

    Article  CAS  PubMed  Google Scholar 

  36. Smee DF, Huffman JH, Morrison AC, Barnard DL, Sidwell RW. Cyclopentane neuraminidase inhibitors with potent in vitro anti-influenza virus activities. Antimicrob Agents Chemother. 2001;45:743–8. https://doi.org/10.1128/AAC.45.3.743-748.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Prichard MN, Williams JD, Komazin-Meredith G, Khan AR, Price NB, Jefferson GM, Harden EA, Hartline CB, Peet NP, Bowlin TL. Synthesis and antiviral activities of methylenecyclopropane analogs with 6-alkoxy and 6-alkylthio substitutions that exhibit broad-spectrum antiviral activity against human herpesviruses. Antimicrob Agents Chemother. 2013;57:3518–27. https://doi.org/10.1128/AAC.00429-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Federal program No. 1021062311392-9-1.4.1. The study of antiviral activity was funded in whole or in part with Federal funds from the National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under contract HHSN272201100016I (MNP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elmira F. Khusnutdinova.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khusnutdinova, E.F., Petrova, A.V. & Kazakova, O.B. Antiviral potency of lupane and oleanane alkynyl-derivatives against human cytomegalovirus and papillomavirus. J Antibiot 77, 50–56 (2024). https://doi.org/10.1038/s41429-023-00672-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-023-00672-5

Search

Quick links