Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evaluation of A-ring hydroxymethylene-amino- triterpenoids as inhibitors of SARS-CoV-2 spike pseudovirus and influenza H1N1

Abstract

A set of triterpene A-ring hydroxymethylene-amino-derivatives was synthesized and their antiviral activity was studied. The synthesized compounds were tested for their potential inhibition of SARS-CoV-2 pseudovirus in BHK-21-hACE2 cells and influenza A/PuertoRico/8/34 (H1N1) virus in MDCK cell culture. Compounds 6, 8 and 19 showed significant anti-SARS-CoV-2 pseudovirus activity with EC50 value of 3.20-11.13 µM, which is comparable to the positive control amodiaquine (EC50 3.17 µM). Among them, 28-O-imidazolyl-azepano-betulin 6 and C3-hydroxymethylene-amino-glycyrrhetol-11,13-diene 19 were identified as the lead compounds with SI values of 7 and 10. The binding mode of compound 6 into the RBD domain of SARS-CoV-2 spike glycoprotein (PDB code: 7DK3) by docking and molecular dynamics simulation was investigated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. World Health Organization: Coronavirus disease (COVID-19) situation report. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports. Accessed 21 Dec 2022.

  2. Banerjee R, Perera L, Tillekeratne LMV. Potential SARS-CoV-2 main protease inhibitors. Drug Discov Today. 2021;26:804–16. https://doi.org/10.1016/j.drudis.2020.12.005

    Article  CAS  PubMed  Google Scholar 

  3. Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021;20:200–16. https://doi.org/10.1038/s41573-020-00114-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Battineni JK, Koneti PK, Bakshi V, Boggula N. Triterpenoids: a review. Int J Pharm Pharm Sci. 2018;2:91–96.

    Google Scholar 

  5. Hou W, Liu B, Xu H. Celastrol: progresses in structure-modifications, structure-activity relationships, pharmacology and toxicology. Eur J Med Chem. 2020;189:112081. https://doi.org/10.1016/j.ejmech.2020.112081

    Article  CAS  PubMed  Google Scholar 

  6. Hordyjewska A, Ostapiuk A, Horecka A, Kurzepa J. Betulin and betulinic acid: triterpenoids derivatives with a powerful biological potential. Phytochem Rev. 2019;18:929–51. https://doi.org/10.1007/s11101-019-09623-1

    Article  CAS  Google Scholar 

  7. Hussain H, Green IR, Ali I, Khan IA, Ali Z, Al-Sadi AM, Ahmed I. Ursolic acid derivatives for pharmaceutical use: a patent review (2012–2016). Expert Opin Ther Pat. 2017;27:1061–72. https://doi.org/10.1080/13543776.2017.1344219

    Article  CAS  PubMed  Google Scholar 

  8. Xiao S, Tian Z, Wang Y, Si L, Zhang L, Zhou D. Recent progress in the antiviral activity and mechanism study of pentacyclic triterpenoids and their derivatives. Med Res Rev. 2018;38:951–76. https://doi.org/10.1002/med.21484

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ryu YB, Park SJ, Kim YM, Lee JY, Seo WD, Chang JS, Park KH, Rho MC, Lee WS. SARS-CoV 3CLpro inhibitory effects of quinone-methide triterpenes from Tripterygium regelii. Bioorg Med Chem Lett. 2010;20:1873–6. https://doi.org/10.1016/j.bmcl.2010.01.152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet. 2003;361:2045–6. https://doi.org/10.1016/S0140-6736(03)13615-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu CY, Jan JT, Ma SH, Kuo C-J, Juan H-F, Cheng Y-SE, Hsu H-H, Huang H-C, Wu D, Brik A, Liang F-S, Liu R-S, Fang J-M, Chen S-T, Liang P-H, Wong C-H. Small molecules targeting severe acute respiratory syndrome human coronavirus. Proc Natl Acad Sci USA. 2004;101:10012–7. https://doi.org/10.1073/pnas.0403596101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hoever G, Baltina L, Michaelis M, Kondratenko R, Baltina L, Tolstikov GA, Doerr HW, Cinatl J Jr. Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus. J Med Chem. 2005;48:1256–9. https://doi.org/10.1021/jm0493008

    Article  CAS  PubMed  Google Scholar 

  13. Wen CC, Kuo YH, Jan JT, Liang PH, Wang SY, Liu HG, Lee CK, Chang ST, Kuo CJ, Lee SS, Hou CC, Hsiao PW, Chien SC, Shyur LF, Yang NS. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J Med Chem. 2007;50:4087–95. https://doi.org/10.1021/jm070295s

    Article  CAS  PubMed  Google Scholar 

  14. Stevaert B, Krasniqi B, Van Loy B, Nguyen T, Thomas J, Vandeput J, Jochmans D, Thiel V, Dijkman R, Dehaen W, Voet A, Naesens L. Betulonic acid derivatives interfering with human coronavirus 229E replication via the nsp15 endoribonuclease. J Med Chem. 2021;64:5632–44. https://doi.org/10.1021/acs.jmedchem.0c02124

    Article  CAS  PubMed  Google Scholar 

  15. Krasilnikov IV, Kudriavtsev AV, Vakhrusheva AV, Frolova ME, Ivanov AV, Stukova MA, Romanovskaya-Romanko EA, Vasilyev KA, Mushenkova NV, Isaev AA. Design and immunological properties of the novel subunit virus-like vaccine against SARS-CoV-2. Vaccines. 2020;10:69. https://doi.org/10.3390/vaccines10010069

    Article  CAS  Google Scholar 

  16. Yarovaya OI, Shcherbakov DN, Borisevich SS, Sokolova AS, Gureev MA, Khamitov EM, Rudometova NB, Zybkina AV, Mordvinova ED, Zaykovskaya AV, Rogachev AD, Pyankov OV, Maksyutov RA, Salakhutdinov NF. Borneol ester derivatives as entry inhibitors of a wide spectrum of SARS-CoV-2 viruses. Viruses. 2022;14:1295. https://doi.org/10.3390/v14061295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kadela-Tomanek M, Jastrzebska M, Marciniec K, Chrobak E, Bebenek E, Boryczka S. Lipophilicity, pharmacokinetic properties, and molecular docking study on SARS-CoV-2 target for betulin triazole derivatives with attached 1,4-quinone. Pharmaceutics. 2021;13:781. https://doi.org/10.3390/pharmaceutics13060781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tretyakova EV, Ma X, Kazakova OB, Shtro AA, Petukhova GD, Smirnova AA, Xu H, Xiao S. Abietic, maleopimaric and quinopimaric dipeptide Ugi-4CR derivatives and their potency against influenza A and SARS-CoV-2. Nat Prod Res. Published online: 17 Aug 2022. https://doi.org/10.1080/14786419.2022.2112040

  19. Tret’yakova EV, Ma X, Kazakova OB, Shtro AA, Petukhova GD, Klabukov AM, Dyatlov DS, Smirnova AA, Xu H, Xiao S. Synthesis and Evaluation of diterpenic mannich bases as antiviral agents against influenza A and SARS-CoV-2. Phytochem Lett 2022;51:91–96. https://doi.org/10.1016/j.phytol.2022.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Szostak M, Yao L, Aube J. Proximity effects in nucleophilic addition reactions to medium-bridged twisted lactams: remarkably stable tetrahedral intermediates. J Am Chem Soc. 2010;132:2078–84. https://doi.org/10.1021/ja909792h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Evans DA, Borg G, Scheidt KA. Remarkably stable tetrahedral intermediates: carbinols from nucleophilic additions to N-acylpyrroles. Angew Chem Int Ed. 2002;41:3188–91. 10.1002/1521-3773(20020902)41:17<3188::AID-ANIE3188>3.0.CO;2-H

    Article  CAS  Google Scholar 

  22. Iwasawa T, Hooley RJ, Rebek J. Stabilization of labile carbonyl addition intermediates by a synthetic receptor. Science 2007;317:493–6. https://doi.org/10.1126/science.11432

    Article  CAS  PubMed  Google Scholar 

  23. Hooley RJ, Restorp P, Iwasawa T, Rebek J. Cavitands with introverted functionality stabilize tetrahedral intermediates. J Am Chem Soc. 2007;129:15639–43. https://doi.org/10.1021/ja0756366

    Article  CAS  PubMed  Google Scholar 

  24. Subik P, Welc B, Wisz B, Wolowiec S. Stable hemiaminals attached to PAMAM dendrimers. Tetrahedron Lett. 2009;50:6512–4. https://doi.org/10.1016/j.tetlet.2009.09.031

    Article  CAS  Google Scholar 

  25. Barys M, Ciunik Z, Drabent K, Kwiecien A. Stable hemiaminals containing a triazole ring. N J Chem. 2010;34:2605–11. https://doi.org/10.1039/C0NJ00346H

    Article  CAS  Google Scholar 

  26. Scott MS, Lucas AC, Luckhurst CA, Prodger JC, Dixon DJ. Ligand-mediated enantioselective addition of lithium carbazolates to aldehydes. Org Biomol Chem. 2006;4:1313–27. https://doi.org/10.1039/B515356E

    Article  CAS  PubMed  Google Scholar 

  27. Viuff AH, Besenbacher LM, Kamori A, Jensen MT, Kilian M, Kato A, Jensen HH. Stable analogues of nojirimycin—synthesis and biological evaluation of nojiristegine and manno-nojiristegine. Org Biomol Chem. 2015;13:9637–58. https://doi.org/10.1039/C5OB01281C

    Article  CAS  PubMed  Google Scholar 

  28. Giniyatullina GV, Flekhter OB, Baikova IP, Starikova ZA, Tolstikov GA. Effective synthesis of methyl 3β-amino-3-deoxybetulinate. Chem Nat Comp. 2008;44:603–5. https://doi.org/10.1007/s10600-008-9138-4

    Article  CAS  Google Scholar 

  29. Smirnova A, Petrova A, Lobov E, Minnibaeva T, Tran Thi Phoung L, Tran Van M, Myint Khine M, Esaulkova I, Slita A, Zarubaev V, Kazakova O. Azepanodipterocarpol is potential candidate for inhibits influenza H1N1 type among other lupane, oleanane, and dammarane A-ring amino-triterpenoids. J Antibiot. 2022;75:258–67. https://doi.org/10.1038/s41429-022-00514-w

    Article  CAS  Google Scholar 

  30. Santos RC, Salvador JAR, Marín S, Cascante M. Novel semisynthetic derivatives of betulin and betulinic acid with cytotoxic activity. Bioorg Med Chem. 2009;17:6241–50. https://doi.org/10.1016/j.bmc.2009.07.050

    Article  CAS  PubMed  Google Scholar 

  31. Kazakova O, Rubanik L, Lobov A, Poleshchuk N, Baikova I, Kapustina Y, Petrova A, Korzun T, Lopatina T, Fedorova A, Rybalova T, Polovianenko D, Mioc M, Șoica C. Synthesis of erythrodiol C-ring derivatives and their activity against Chlamydia trachomatis. Steroids. 2021;175:108912. https://doi.org/10.1016/j.steroids.2021.108912

    Article  CAS  PubMed  Google Scholar 

  32. Si L, Bai H, Rodas M, Cao W, Oh CY, Jiang A, Moller R, Hoagland D, Oishi K, Horiuchi S, Uhl S, Blanco-Melo D, Albrecht RA, Liu W-C, Jordan T, Nilsson-Payant BE, Golynker I, Frere J, Logue J, Haupt R, McGrath M, Weston S, Zhang T, Plebani R, Soong M, Nurani A, Min Kim S, Zhu DY, Benam KH, Goyal G, Gilpin SE, Prantil-Baun R, Gygi SP, Powers RK, Carlson KE, Frieman M, tenOever BR, Ingber DE. A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics. Nat Biomed Eng. 2021;5:815–29. https://doi.org/10.1038/s41551-021-00718-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Smee DF, Hurst BL, Evans WJ, Clyde N, Wright S, Peterson C, Jung KH, Day CW. Evaluation of cell viability dyes in antiviral assays with RNA viruses that exhibit different cytopathogenic properties. J Virol Methods. 2017;246:51–57. https://doi.org/10.1016/j.jviromet.2017.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lopatina TV, Medvedeva NI, Baikova IP, Iskhakov AS, Kazakova OB. Synthesis and cytotoxicity of O- and N-acylderivatives of azepanobetulin. Russ J Bioorg Chem. 2019;45:292–301. https://doi.org/10.1134/S106816201904006X

    Article  CAS  Google Scholar 

  35. Kazakova OB, Rubanik LV, Smirnova IE, Savinova OV, Petrova AV, Poleschuk NN, Khusnutdinova EF, Boreko EI, Kapustina YM. Synthesis and in vitro activity of oleanane type derivatives against Chlamydia trachomatis. Org Commun. 2019;12:169–75. https://doi.org/10.25135/acg.oc.66.19.07.1352

    Article  CAS  Google Scholar 

  36. Kazakova OB, Brunel JM, Khusnutdinova EF, Negrel S, Giniyatullina GV, Lopatina TV, Petrova AV. A-ring modified triterpenoids and their spermidine-aldimines with strong antibacterial activity. Molbank. 2019;3:M1078. https://doi.org/10.3390/M1078

    Article  Google Scholar 

  37. Medvedeva NI, Kazakova OB, Lopatina TV, Smirnova IE, Giniyatullina GV, Baikova IP, Kataev VE. Synthesis and antimycobacterial activity of triterpeniс A-ring azepanes. Eur J Med Chem. 2018;143:464–72. https://doi.org/10.1016/j.ejmech.2017.11.035

    Article  CAS  PubMed  Google Scholar 

  38. Kazakova O, Smirnova I, Lopatina T, Giniyatullina G, Petrova A, Khusnutdinova E, Csuk R, Serbian I, Loesche A. Synthesis and cholinesterase inhibiting potential of A-ring azepano- and 3-amino-3,4-seco-triterpenoids. Bioorg Chem. 2020;101:104001. https://doi.org/10.1016/j.bioorg.2020.104001

    Article  CAS  PubMed  Google Scholar 

  39. Ma C, Nakamura N, Hattori M. Chemical modification of oleanene type triterpenes and their inhibitory activity against HIV-1 protease dimerization. Chem Pharm Bul. 2000;48:1681–8. https://doi.org/10.1248/cpb.48.1681

    Article  CAS  Google Scholar 

  40. Jain SM, Atal CK. Synthesis of amino derivatives of ursolic acid. Ind J Chem., Section B 25B. 1986;4:427-8.

  41. Schrödinger Release 2018-4: LigPrep, Schrödinger, LLC, New York, NY; 2018.

  42. Schrödinger Release 2018-4: induced fit docking protocol; glide, Schrödinger, LLC, New York, NY, 2018; Prime, Schrödinger, LLC, New York, NY; 2018.

  43. Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA. Amber 14 reference manual, University of California, San Francisco, 2014.

Download references

Funding

This research was funded by RFBR and NSFC according to the research project № 20-53-55001 and the International Cooperation and Exchange Program of China (NSFC-RFBR, No. 82161148006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oxana Kazakova or Sulong Xiao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazakova, O., Ma, X., Tretyakova, E. et al. Evaluation of A-ring hydroxymethylene-amino- triterpenoids as inhibitors of SARS-CoV-2 spike pseudovirus and influenza H1N1. J Antibiot 77, 39–49 (2024). https://doi.org/10.1038/s41429-023-00677-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-023-00677-0

Search

Quick links