Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Saccharopolyspora oryzae sp. nov., isolated from rhizosphere soil of the wild rice species Oryza rufipogon

Abstract

A novel actinobacterium, designated as strain WRP15-2T, was isolated from rhizosphere soil of rice plant (Oryza rufipogon). The strain was Gram-stain-positive, aerobic, and non-motile. Phylogenetic analysis based on the 16S rRNA gene sequences showed that strain WRP15-2T fell into the genus Saccharopolyspora. The strain shared the highest 16S rRNA gene sequence similarity with the type strains Saccharopolyspora kobensis JCM 9109T (99.1%), Saccharopolyspora indica VRC122T (98.9%), and Saccharopolyspora antimicrobica DSM 45119T (98.7%). However, the digital DNA-DNA hybridization and average nucleotide identity values among these strains confirmed that the microorganism represented a novel member of the genus Saccharopolyspora. Chemotaxonomic data revealed that strain WRP15-2T possessed MK-9(H4) as the predominant menaquinone. It contained meso-diaminopimelic acid as the diagnostic diaminopimelic acid and arabinose, galactose, and ribose as predominant whole-cell sugars. The detected phospholipids were dominated by phosphatidylethanolamine, hydroxy-phosphatidylethanolamine, phosphatidylmethylethanolamine, hydroxy-phosphatidylmethylethanolamine, and phosphatidylcholine. The predominant cellular fatty acids were iso-C16:0, C16:0, and iso-C15:0. The G + C content of the genomic DNA was 69.5%. Based on these genotypic and phenotypic data, it is supported that strain WRP15-2T represents a novel species of the genus Saccharopolyspora, for which the name Saccharopolyspora oryzae sp. nov. is proposed. The type strain is WRP15-2T ( = TBRC 15728T = NBRC 115560T).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lacey J, Goodfellow M. A novel actinomycete from sugar-cane bagasse: Saccharopolyspora hirsuta gen. et sp. nov. Microbiol. 1975;88:75–85.

    CAS  Google Scholar 

  2. Warwick S, Bowen T, McVeigh H, Embley TM. A phylogenetic analysis of the family Pseudonocardiaceae and the genera Actinokineospora and Saccharothrix with 16S rRNA sequences and a proposal to combine the genera Amycolata and Pseudonocardia in an emended genus Pseudonocardia. Int J Syst Evol Microbiol. 1994;44:293–9.

    CAS  Google Scholar 

  3. Kämpfer P. Genus Saccharopolyspora. In: Goodfellow M, Kämpfer P, Busse H-J, Trujillo M, Suzuki K, editors. Bergey’s Manual of Systematics Bacteriology. Vol 5, Springer; 2012. p. 1396–1414.

  4. Parte AC, Carbasse JS, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol. 2020;70:5607.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yang Z-W, Salam N, Asem MD, Fang B-Z, Lan L, et al. Saccharopolyspora deserti sp. nov., a novel halotolerant actinobacterium isolated from a desert. Int J Syst Evol Microbiol. 2018;68:860–4.

    Article  CAS  PubMed  Google Scholar 

  6. Kim SB, Goodfellow M. Saccharopolyspora. In: Whitman WB, editor. Bergey’s Manual of Systematics of Archaea and Bacteria. John Wiley & Sons, Inc; 2015. p. 1–30.

  7. Saygin H, Ay H, Guven K, Inan-Bektas K, Cetin D, et al. Saccharopolyspora karakumensis sp. nov., Saccharopolyspora elongata sp. nov., Saccharopolyspora aridisoli sp. nov., Saccharopolyspora terrae sp. nov. and their biotechnological potential revealed by genome analysis. Syst Appl Microbiol. 2021;44:126270.

    Article  CAS  PubMed  Google Scholar 

  8. Pham JV, Yilma MA, Feliz A, Majid MT, Maffetone N, et al. A review of the microbial production of bioactive natural products and biologics. Front Microbiol. 2019;10:1404.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Huang P, Molina J, Flowers JM, Rubinstein S, Jackson SA, et al. Phylogeography of Asian wild rice, Oryza rufipogon: a genome‐wide view. Mol Ecol. 2012;21:4593–604.

    Article  PubMed  Google Scholar 

  10. Pikovskaya R. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiol. 1948;17:362–70.

    CAS  Google Scholar 

  11. Shirling ET, Gottlieb D. Methods for characterization of Streptomyces species. Int J Bacteriol. 1966;16:313–40.

    Article  Google Scholar 

  12. Cross T, Maciver AM, Lacey J. The thermophilic actinomycetes in mouldy hay: Micropolyspora faeni sp. nov. Microbiol. 1968;50:351–9.

    CAS  Google Scholar 

  13. Waksman SA. Studies on the proteolytic enzymes of soil fungi and actinomycetes. J Bacteriol. 1918;3:509–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Waksman SA, Henrici AT. The nomenclature and classification of the actinomycetes. J Bacteriol. 1943;46:337–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hamaki T, Suzuki M, Fudou R, Jojima Y, Kajiura T, et al. Isolation of novel bacteria and actinomycetes using soil-extract agar medium. J Biosci Bioeng. 2005;99:485–92.

    Article  CAS  PubMed  Google Scholar 

  16. Mundie DA. The NBS/ISCC Color System. http://www.anthus.com/Colors/Cent.html. 1995.

  17. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Evol Microbiol. 1974;24:54–63.

    Google Scholar 

  18. Williams S, Goodfellow M, Alderson G, Wellington E, Sneath P, et al. Numerical classification of Streptomyces and related genera. Microbiol. 1983;129:1743–813.

    Article  CAS  Google Scholar 

  19. Smibert RM, Krieg NR. Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR, editors. Methods for General and Molecular Bacteriology. Washington DC: ASM; 1994. p. 607–54.

  20. Gordon RE, Mihm JM. A comparative study of some strains received as nocardiae. J Bacteriol. 1957;73:15–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Becker B, Lechevalier M, Lechevalier H. Chemical composition of cell-wall preparations from strains of various form-genera of aerobic actinomycetes. Appl Microbiol. 1965;13:236–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol. 1983;29:319–22.

    Article  CAS  Google Scholar 

  23. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol. 1974;28:226–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tomiyasu I. Mycolic acid composition and thermally adaptative changes in Nocardia asteroides. J Bacteriol. 1982;151:828–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Minnikin D, Patel P, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Evol Microbiol. 1977;27:104–17.

    CAS  Google Scholar 

  26. Collins M, Pirouz T, Goodfellow M, Minnikin D. Distribution of menaquinones in actinomycetes and corynebacteria. Microbiol. 1977;100:221–30.

    CAS  Google Scholar 

  27. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI technical note 101. Newark, DE: MIDI inc; 1990.

  28. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. Practical Streptomyces Genetics. Norwich: The John Innes Foundation; 2000.

  29. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017;67:1613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.

    CAS  PubMed  Google Scholar 

  31. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17:368–76.

    Article  CAS  PubMed  Google Scholar 

  32. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol. 1971;20:406–16.

    Article  Google Scholar 

  33. Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38:3022–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. J Bioinform. 2013;29:1072–5.

    Article  CAS  Google Scholar 

  35. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. J Bioinform. 2016;32:929–31.

    Article  CAS  Google Scholar 

  36. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013;14:1–14.

    Article  Google Scholar 

  37. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun. 2019;10:2182.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014;42:D206–D14.

    Article  CAS  PubMed  Google Scholar 

  39. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, Van Wezel GP, et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 2021;49:W29–W35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lechevalier MP, De Bievre C, Lechevalier H. Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol. 1977;5:249–60.

    Article  CAS  Google Scholar 

  41. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol. 2007;57:81–91.

    Article  CAS  PubMed  Google Scholar 

  42. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek. 2017;110:1281–6.

    Article  CAS  PubMed  Google Scholar 

  43. Lautru S, Gondry M, Genet R, Pernodet J-L. The albonoursin gene cluster of S. noursei: biosynthesis of diketopiperazine metabolites independent of nonribosomal peptide synthetases. Chem Biol. 2002;9:1355–64.

    Article  CAS  PubMed  Google Scholar 

  44. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun. 2019;10:1–10.

    Article  CAS  Google Scholar 

  45. Vaddavalli R, Peddi S, Kothagauni SY, Begum Z, Gaddam B, et al. Saccharopolyspora indica sp. nov., an actinomycete isolated from the rhizosphere of Callistemon citrinus (Curtis). Int J Syst Evol Microbiol. 2014;64:1559–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research is funded by Kasetsart University through the Graduate School Fellowship Program to Sirikarn Kammanee. We are grateful to Ms Duangkamon Boonchuay for sample collection. We would also like to thank UGSAS-GU via the “Microbiology Laboratory Station for IC-GU12” at Kasetsart University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kannika Duangmal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kammanee, S., Muangham, S., Butdee, W. et al. Saccharopolyspora oryzae sp. nov., isolated from rhizosphere soil of the wild rice species Oryza rufipogon. J Antibiot 76, 658–664 (2023). https://doi.org/10.1038/s41429-023-00647-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-023-00647-6

Search

Quick links