Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Triclosan targeting of gut microbiome ameliorates hepatic steatosis in high fat diet-fed mice

Abstract

Antibiotic use provides a promising strategy for the treatment of non-alcoholic fatty liver disease (NAFLD) by regulating the gut microbiota composition. Triclosan, a widely used antibiotic, may improve gut microbiome dysbiosis associated with NAFLD through the suppression of pathogenic gram-negative bacteria. However, the effects of triclosan on gut microbiota and hepatic steatosis and have not been explored in NAFLD mouse model. In this study, C57BL/6J mice were fed with high fat diet (HFD) for continuous 20 weeks and treated with triclosan at 400 mg/kg/d for 8 weeks from week 13. We explored the effects of triclosan on hepatic lipid accumulation and gut microbiome in HFD-fed mice by histological examination and 16 S ribosomal RNA sequencing, respectively. Analysis on the composition of gut microbiota indicated that triclosan suppressed pathogenic gram-negative bacteria, including Helicobacter, Erysipelatoclostridium and Citrobacter, and increased the ratio of Bacteroidetes/Firmicutes in HFD-fed mice. Meanwhile, triclosan increased the relative abundance of beneficial gut microbiomes including Lactobacillus, Bifidobacterium and Lachnospiraceae, which protected against metabolic abnormality. The results of alpha-diversity and beta-diversity also showed the improvement of triclosan on bacterial diversity and richness in HFD-fed mice. Pathway analysis further confirmed that triclosan can regulate nutrient and energy metabolism through the elimination of deleterious bacteria. As a result, triclosan intervention significantly reduced lipid accumulation and alleviated hepatic steatosis in HFD-fed mice. In conclusion, our results suggest that triclosan can alleviate liver steatosis in HFD-fed mice by targeting the gut microbiome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Loomba R, Friedman SL, Shulman GI. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell 2021;184:2537–64.

    Article  CAS  PubMed  Google Scholar 

  2. Bessone F, Razori MV, Roma MG. Molecular pathways of nonalcoholic fatty liver disease development and progression. Cell Mol life Sci. 2019;76:99–128.

    Article  CAS  PubMed  Google Scholar 

  3. Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24:908–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ipsen DH, Lykkesfeldt J, Tveden-Nyborg P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol Life Sci. 2018;75:3313–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rowe IA, Wai-Sun Wong V, Loomba R. Treatment candidacy for pharmacologic therapies for NASH. Clin Gastroenterol hepatology: Off Clin Pract J Am Gastroenterological Assoc. 2021;S1542-3565:00228.

    Google Scholar 

  6. Canfora EE, Meex RCR, Venema K, Blaak EE. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat Rev Endocrinol. 2019;15:261–73.

    Article  CAS  PubMed  Google Scholar 

  7. Staley C, Weingarden AR, Khoruts A, Sadowsky MJ. Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Appl Microbiol Biotechnol. 2017;101:47–64.

    Article  CAS  PubMed  Google Scholar 

  8. Albillos A, de Gottardi A, Rescigno M. The gut-liver axis in liver disease: Pathophysiological basis for therapy. J Hepatol. 2020;72:558–77.

    Article  CAS  PubMed  Google Scholar 

  9. Zhao Z, Chen L, Zhao Y, Wang C, Duan C, Yang G, et al. Lactobacillus plantarum NA136 ameliorates nonalcoholic fatty liver disease by modulating gut microbiota, improving intestinal barrier integrity, and attenuating inflammation. Appl Microbiol Biotechnol. 2020;104:5273–82.

    Article  CAS  PubMed  Google Scholar 

  10. Aron-Wisnewsky J, Vigliotti C, Witjes J, Le P, Holleboom AG, Verheij J, et al. Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nat Rev Gastroenterol Hepatol. 2020;17:279–97.

    Article  PubMed  Google Scholar 

  11. Carpino G, Del Ben M, Pastori D. Increased Liver Localization of Lipopolysaccharides in Human and Experimental NAFLD. Hepatol (Baltim, Md). 2020;72:470–85.

    Article  CAS  Google Scholar 

  12. Kolodziejczyk AA, Zheng D, Shibolet O, Elinav E. The role of the microbiome in NAFLD and NASH. EMBO Mol Med. 2019;11:e9302.

    Article  PubMed  CAS  Google Scholar 

  13. Hu H, Lin A, Kong M, Yao X, Yin M, Xia H, et al. Intestinal microbiome and NAFLD: molecular insights and therapeutic perspectives. J Gastroenterol. 2020;55:142–58.

    Article  CAS  PubMed  Google Scholar 

  14. Vosatka R, Kratky M, Vinsova J. Triclosan and its derivatives as antimycobacterial active agents. Eur J Pharm Sci: Off J Eur Federation Pharm Sci. 2018;114:318–31.

    Article  CAS  Google Scholar 

  15. McMurry LM, Oethinger M, Levy SB. Triclosan targets lipid synthesis. Nature 1998;394:531–2.

    Article  CAS  PubMed  Google Scholar 

  16. Perozzo R, Kuo M, Sidhu A, Valiyaveettil JT, Bittman R, Jacobs WR, Jr., et al. Structural elucidation of the specificity of the antibacterial agent triclosan for malarial enoyl acyl carrier protein reductase. J Biol Chem. 2002;277:13106–14.

    Article  CAS  PubMed  Google Scholar 

  17. Simpson BW, Trent MS. Pushing the envelope: LPS modifications and their consequences. Nat Rev Microbiol. 2019;17:403–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Escalada MG, Harwood JL, Maillard JY, Ochs D. Triclosan inhibition of fatty acid synthesis and its effect on growth of Escherichia coli and Pseudomonas aeruginosa. J Antimicrobial Chemother. 2005;55:879–82.

    Article  CAS  Google Scholar 

  19. Poger D, Mark AE. Effect of Triclosan and Chloroxylenol on Bacterial Membranes. J Phys Chem B. 2019;123:5291–301.

    Article  CAS  PubMed  Google Scholar 

  20. Schoeler M, Caesar R. Dietary lipids, gut microbiota and lipid metabolism. Rev Endocr Metab Disord. 2019;20:461–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ferro D, Baratta F, Angelico F, Cocomello N, Colantoni A, Del Ben M, et al. New Insights into the Pathogenesis of Non-Alcoholic Fatty Liver Disease: Gut-Derived Lipopolysaccharides and Oxidative Stress. Nutrients 2020;12:2762.

    Article  CAS  PubMed Central  Google Scholar 

  22. Safari Z, Gérard P. The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD). Cell Mol life Sci. 2019;76:1541–58.

    Article  CAS  PubMed  Google Scholar 

  23. Bass NM, Mullen KD, Sanyal A, Poordad F, Neff G, Leevy CB, et al. Rifaximin treatment in hepatic encephalopathy. N Engl J Med. 2010;362:1071–81.

    Article  CAS  PubMed  Google Scholar 

  24. Chong CYL, Orr D, Plank LD, Murphy R, O’Sullivan JM, Vatanen T. Randomised Double-Blind Placebo-Controlled Trial of Inulin with Metronidazole in Non-Alcoholic Fatty Liver Disease (NAFLD). Nutrients 2020;12:937.

    Article  CAS  PubMed Central  Google Scholar 

  25. Brandt A, Jin CJ, Nolte K, Sellmann C, Engstler AJ, Bergheim I. Short-Term Intake of a Fructose-, Fat- and Cholesterol-Rich Diet Causes Hepatic Steatosis in Mice: Effect of Antibiotic Treatment. Nutrients 2017;9:1013.

    Article  PubMed Central  CAS  Google Scholar 

  26. Bhargava HN, Leonard PA. Triclosan: applications and safety. Am J Infect Control. 1996;24:209–18.

    Article  CAS  PubMed  Google Scholar 

  27. Lee TW, Kim JC, Hwang SJ. Hydrogel patches containing triclosan for acne treatment. Eur J Pharmaceutics Biopharmaceutics: Off J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2003;56:407–12.

    Article  CAS  Google Scholar 

  28. Sumida Y, Yoneda M. Current and future pharmacological therapies for NAFLD/NASH. J Gastroenterol. 2018;53:362–76.

    Article  CAS  PubMed  Google Scholar 

  29. Calanni F, Renzulli C, Barbanti M, Viscomi GC. Rifaximin: beyond the traditional antibiotic activity. J Antibiotics. 2014;67:667–70.

    Article  CAS  Google Scholar 

  30. Chen HT, Huang HL, Li YQ, Xu HM, Zhou YJ. Therapeutic advances in non-alcoholic fatty liver disease: a microbiota-centered view. World J Gastroenterol. 2020;26:1901–11.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rodricks JV, Swenberg JA, Borzelleca JF, Maronpot RR, Shipp AM. Triclosan: a critical review of the experimental data and development of margins of safety for consumer products. Crit Rev Toxicol. 2010;40:422–84.

    Article  CAS  PubMed  Google Scholar 

  32. Sun D, Zhao T, Long K, Wu M, Zhang Z. Triclosan down-regulates fatty acid synthase through microRNAs in HepG2 cells. Eur J Pharmacol. 2021;907:174261.

    Article  CAS  PubMed  Google Scholar 

  33. Jones RD, Jampani HB, Newman JL, Lee AS. Triclosan: a review of effectiveness and safety in health care settings. Am J Infect Control. 2000;28:184–96.

    Article  CAS  PubMed  Google Scholar 

  34. Giuliano CA, Rybak MJ. Efficacy of triclosan as an antimicrobial hand soap and its potential impact on antimicrobial resistance: a focused review. Pharmacotherapy 2015;35:328–36.

    Article  CAS  PubMed  Google Scholar 

  35. Weatherly LM, Gosse JA. Triclosan exposure, transformation, and human health effects. J Toxicol Environ health Part B, Crit Rev. 2017;20:447–69.

    Article  CAS  Google Scholar 

  36. McNamara PJ, Levy SB. Triclosan: an Instructive Tale. Antimicrobial Agents Chemother. 2016;60:7015–6.

    Article  CAS  Google Scholar 

  37. Yueh MF, Taniguchi K, Chen S, Evans RM, Hammock BD, Karin M, et al. The commonly used antimicrobial additive triclosan is a liver tumor promoter. Proc Natl Acad Sci USA. 2014;111:17200–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lake BG, Price RJ, Osimitz TG. Mode of action analysis for pesticide-induced rodent liver tumours involving activation of the constitutive androstane receptor: relevance to human cancer risk. Pest Manag Sci. 2015;71:829–34.

    Article  CAS  PubMed  Google Scholar 

  39. Sun D, Zhao T, Li X, Zhang Z. Evaluation of DNA and chromosomal damage in two human HaCaT and L02 cells treated with varying triclosan concentrations. J Toxicol Environ Health, Part A: Curr Issues. 2019;82:473–82.

    Article  CAS  Google Scholar 

  40. Yueh MF, He F, Chen C, Vu C, Tripathi A, Knight R, et al. Triclosan leads to dysregulation of the metabolic regulator FGF21 exacerbating high fat diet-induced nonalcoholic fatty liver disease. Proc Natl Acad Sci USA. 2020;117:31259–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu B, Wang Y, Fillgrove KL, Anderson VE. Triclosan inhibits enoyl-reductase of type I fatty acid synthase in vitro and is cytotoxic to MCF-7 and SKBr-3 breast cancer cells. Cancer Chemother Pharmacol. 2002;49:187–93.

    Article  CAS  PubMed  Google Scholar 

  42. Sadowski MC, Pouwer RH, Gunter JH, Lubik AA, Quinn RJ, Nelson CC. The fatty acid synthase inhibitor triclosan: repurposing an anti-microbial agent for targeting prostate cancer. Oncotarget 2014;5:9362–81.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yueh MF, Tukey RH. Triclosan: a widespread environmental toxicant with many biological effects. Annu Rev Pharmacol Toxicol. 2016;56:251–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mihaich E, Capdevielle M, Urbach-Ross D, Slezak B. Hypothesis-driven weight-of-evidence analysis of endocrine disruption potential: a case study with triclosan. Crit Rev Toxicol. 2017;47:263–85.

    Article  CAS  PubMed  Google Scholar 

  45. Ley C, Pischel L, Parsonnet J. Triclosan and triclocarban exposure and thyroid function during pregnancy-A randomized intervention. Reprod Toxicol (Elmsford, NY). 2017;74:143–9.

    Article  CAS  Google Scholar 

  46. Jiang Y, Zhao H, Xia W, Li Y, Liu H, Hao K, et al. Prenatal exposure to benzophenones, parabens and triclosan and neurocognitive development at 2 years. Environ Int. 2019;126:413–21.

    Article  CAS  PubMed  Google Scholar 

  47. Tsai MC, Liu YY, Lin CC, Wang CC, Wu YJ, Yong CC, et al. Gut Microbiota Dysbiosis in Patients with Biopsy-Proven Nonalcoholic Fatty Liver Disease: A Cross-Sectional Study in Taiwan. Nutrients 2020;12:820.

    Article  CAS  PubMed Central  Google Scholar 

  48. Zheng J, Zhu L, Hu B, Zou X, Hu H, Zhang Z, et al. 1-Deoxynojirimycin improves high fat diet-induced nonalcoholic steatohepatitis by restoring gut dysbiosis. J Nutr Biochem. 2019;71:16–26.

    Article  CAS  PubMed  Google Scholar 

  49. Cao Y, Pan Q, Cai W, Shen F, Chen GY, Xu LM, et al. Modulation of Gut Microbiota by Berberine Improves Steatohepatitis in High-Fat Diet-Fed BALB/C Mice. Arch Iran Med. 2016;19:197–203.

    PubMed  Google Scholar 

  50. Sookoian S, Salatino A, Castaño GO, Landa MS, Fijalkowky C, Garaycoechea M, et al. Intrahepatic bacterial metataxonomic signature in non-alcoholic fatty liver disease. Gut 2020;69:1483–91.

    Article  CAS  PubMed  Google Scholar 

  51. Wang J, Zhu G, Sun C, Xiong K, Yao T, Su Y, et al. TAK-242 ameliorates DSS-induced colitis by regulating the gut microbiota and the JAK2/STAT3 signaling pathway. Microb Cell Fact. 2020;19:158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Castaño-Rodríguez N, Mitchell HM, Kaakoush NO. NAFLD, Helicobacter species and the intestinal microbiome. Best Pract Res Clin Gastroenterol. 2017;31:657–68.

    Article  PubMed  CAS  Google Scholar 

  53. Oh JH, Lee JH, Cho MS, Kim H, Chun J. Characterization of Gut Microbiome in Korean Patients with Metabolic Associated Fatty Liver Disease. Nutrients 2021;13:1013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yue S, Zhao D, Peng C, Tan C, Wang Q, Gong J. Effects of theabrownin on serum metabolites and gut microbiome in rats with a high-sugar diet. Food Funct. 2019;10:7063–80.

    Article  CAS  PubMed  Google Scholar 

  55. Chen Z, He J, Shi W. Association between urinary environmental phenols and the prevalence of cardiovascular diseases in US adults. Environ Sci Pollution Res Int. 2022;1–8. Online ahead of print.

  56. Ponziani FR, Zocco MA, D’Aversa F, Pompili M, Gasbarrini A. Eubiotic properties of rifaximin: disruption of the traditional concepts in gut microbiota modulation. World J Gastroenterol. 2017;23:4491–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang G, Jiao T, Xu Y, Li D, Si Q, Hao J, et al. Bifidobacterium adolescentis and Lactobacillus rhamnosus alleviate non-alcoholic fatty liver disease induced by a high-fat, high-cholesterol diet through modulation of different gut microbiota-dependent pathways. Food Funct. 2020;11:6115–27.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the grant from the National Natural Science Foundation of China (Grant No. 82073510) and Basic Research Project of Sichuan Province (Grant No. 2020YJ0232) to ZZ.

Author information

Authors and Affiliations

Authors

Contributions

ZZZ conceived and designed study. SDL, ZC, and WJJ performed research. SDL and HW analyzed data. SDL wrote the paper. ZZZ revised the paper. All authors read and approved the paper.

Corresponding author

Correspondence to Zunzhen Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, D., Zuo, C., Huang, W. et al. Triclosan targeting of gut microbiome ameliorates hepatic steatosis in high fat diet-fed mice. J Antibiot 75, 341–353 (2022). https://doi.org/10.1038/s41429-022-00522-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-022-00522-w

This article is cited by

Search

Quick links