Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rausuquinone, a non-glycosylated pluramycin-class antibiotic from Rhodococcus

Abstract

A new pluramycin-class polyketide, rausuquinone (1), and its known congener hydramycin (2) were isolated from the culture extract of the deep-sea water-derived Rhodococcus sp. RD015140. Compound 1 possesses a γ-pyrone-fused anthraquinone core with a 3-butene-1,2-diol side chain. Structures of 1 was determined by extensive analysis of 1D and 2D NMR spectroscopic data. Compound 1 showed antimicrobial activity against Gram-positive bacteria. This is the first discovery of aromatic polyketides from the genus Rhodococcus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hansen MR, Hurley LH. Pluramycins. Old drugs having modern friends in structural biology. Acc Chem Res. 1996;29:249–58.

    Article  CAS  Google Scholar 

  2. Kondo S, Miyamoto M, Naganawa H, Takeuchi T, Umezawa H. Structures of pluramycin A and neopluramycin. J Antibiot. 1997;30:1143–5.

    Article  Google Scholar 

  3. Yasuzawa T, Saitoh Y, Sano H. Structures of the novel anthraquinone antitumor antibiotics, DC-92B and DC92-D. J Antibiot. 1989;43:485–91.

    Article  Google Scholar 

  4. Vértesy L, Barbone FP, Cashmen E, Decker H, Ehrlich K, Jordan B, et al. Potent antitumor antibiotics from Saccharothrix sp. DSM12931. J Antibiot. 2001;54:718–29.

    Article  Google Scholar 

  5. Murphy BT, Narender T, Kauffman CA, Woolery M, Jensen PR, Fenical W. Saliniquinones A-F, new members of the highly cytotoxic anthraquinone- γ-pyrones from the marine actinomycete salinispora arenicola. Aust J Chem. 2010;63:929–34.

    Article  CAS  Google Scholar 

  6. Jensen PR, Williams PG, Oh DC, Zeigler L, Fenical W. Species-specific secondary metabolite production in marine actinomycetes of the genus Salinispora. Appl Environ Microbiol. 2007;73:1146–52.

    Article  CAS  Google Scholar 

  7. Jensen PR, Moore BS, Fenical W. The marine actinomycete genus Salinispora: A model organism for secondary metabolite discovery. Nat Prod Rep. 2015;32:738–51.

    Article  CAS  Google Scholar 

  8. Komaki H, Sakurai K, Hosoyama A, Kimura A, Igarashi Y, Tamura T. Diversity of nonribosomal peptide synthetase and polyketide synthase gene clusters among taxonomically close Streptomyces strains. Sci Rep. 2018;8:1–11.

    Article  CAS  Google Scholar 

  9. Komaki H, Sakurai K, Hosoyama A, Kimura A, Trujilo ME, Igarashi Y, et al. Diversity of PKS and NRPS gene clusters between Streptomyces abyssomicinicus sp. nov. and its taxonomic neighbor. J Antibiot. 2020;73:141–51.

    Article  CAS  Google Scholar 

  10. Yang T, Yamada K, Zhou T, Harunari E, Igarashi Y, Terahara T, et al. Akazamicin, a cytotoxic aromatic polyketide from marine-derived Nonomuraea sp. J Antibiot. 2019;72:202–9.

    Article  CAS  Google Scholar 

  11. Karim MRU, In Y, Zhou T, Harunari E, Oku N, Igarashi Y. Nyuzenamides A and B: bicyclic peptides with antifungal and cytotoxic activity from a marine-derived Streptomyces sp. Org Lett. 2021;23:2109–13.

    Article  CAS  Google Scholar 

  12. Igarashi Y, Matsuyuki Y, Yamada M, Fujihara N, Harunari E, Oku N, et al. Structure determination, biosynthetic origin, and total synthesis of akazaoxime, an enteromycin-class metabolite from a marine-derived actinomycete of the genus Micromonospora 2021;86:6528–37.

    CAS  Google Scholar 

  13. Itoh J, Tsuyuki T, Fujita K, Sezaki M. Studies on a new antibiotic SF-2330 II. The structural elucidation. J Antibiot. 1986;39:780–3.

    Article  CAS  Google Scholar 

  14. Schumacher RW, Davidson BS, Montenegro DA, Bernan VS. γ-Indomycinone, a new pluramycin metabolite from a deep-sea derived actinomycete. J Nat Prod. 1985;58:613–7.

    Article  Google Scholar 

  15. Biabani MAF, Laatsch H, Helmke E, Weyland H. δ-Indomycinone: a new member of pluramycin class of antibiotics isolated from marine Streptomyces sp. J Antibiot. 1997;50:874–7.

    Article  CAS  Google Scholar 

  16. Matsumoto M, Nagaoka K, Ishizeki S, Yokoi K, Nakajima T. Manufacture of antibiotic ss43405e by Streptomyces. Jpn Kokai Tokkyo Koho. 1986;JP 6118928.

  17. Konishi M, Shimizu K, Ohbayashi M, Tomita K, Miyaki T, Oki T. BU-3839T antibiotic isolation and use as antibacterial agent and neoplasm inhibitor. 1990;U.S. patent 4927848.

  18. Hanada M, kaneta K, Nishiyama Y, Hoshino Y, Konishi M, Oki T. Hydramycin, a new antitumor antibiotic. Taxonomy, isolation, physico-chemical properties, structure and biological activity. J Antibiot. 1991;44:824–31.

    Article  CAS  Google Scholar 

  19. Uyeda M, Yokomizo K, Ito A, Nakayama K, Watanabe H, Kido Y. A new antiherpetic agent, AH-1763 IIa, produced by Streptomyces cyaneus strain No. 1763. J Antibiot. 1997;50:828–32.

    Article  CAS  Google Scholar 

  20. Ceniceros A, Dijkhuizen L, Petrusma M, Medema MH. Genome-based exploration of the specialized metabolic capacities of the genus Rhodococcus. BMC Genomics. 2017;18:1–16.

    Article  Google Scholar 

  21. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, et al. AntiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019;47:W81–7.

    Article  CAS  Google Scholar 

  22. Nachtigall J, Schneider K, Nicholson G, Goodfellow M, Zinecker H, Imhoff JF, et al. Two new aurachins from Rhodococcus sp. Acta 2259. J Antibiot. 2010;63:567–9.

    Article  CAS  Google Scholar 

  23. Kurosawa K, Ghiviriga I, Sambandan TG, Lessard PA, Barbara JE, Rha C, et al. Rhodostreptomycins, antibiotics biosynthesized following horizontal gene transfer from Streptomyces padanus to Rhodococcus fascians. J Am Chem Soc. 2008;130:1126–7.

    Article  CAS  Google Scholar 

  24. Sharma AR, Harunari E, Oku N, Matsuura N, Trianto A, Igarashi Y. Two antibacterial and PPARα/γ-agonistic unsaturated keto fatty acids from a coral-associated actinomycete of the genus Micrococcus. Beilstein J Org Chem. 2020;16:297–304.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Japan Society for the Promotion of Science (JSPS) for Young Scientists (21K14794).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Igarashi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harunari, E., Bando, M. & Igarashi, Y. Rausuquinone, a non-glycosylated pluramycin-class antibiotic from Rhodococcus. J Antibiot 75, 86–91 (2022). https://doi.org/10.1038/s41429-021-00489-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-021-00489-0

This article is cited by

Search

Quick links