Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Design and synthesis of 4-[4-formyl-3-(2-naphthyl)pyrazol-1-yl]benzoic acid derivatives as potent growth inhibitors of drug-resistant Staphylococcus aureus

Abstract

We report the synthesis and antimicrobial studies of a new series of naphthyl-substituted pyrazole-derived hydrazones. Many of these novel compounds are potent growth inhibitors of several strains of drug-resistant bacteria. These potent compounds have inclined growth inhibitory properties for planktonic Staphylococcus aureus and Acinetobacter baumannii, and its drug-resistant variants with minimum inhibitory concentration (MIC) as low as 0.78 and 1.56 µg ml−1, respectively. These compounds also show potent activity against S. aureus and A. baumannii biofilm formation and eradication properties. Time Kill Assay shows that these compounds are bactericidal for S. aureus and bacteriostatic for A. baumannii. The probable mode of action is the disruption of the bacterial cell membrane. Furthermore, potent compounds are nontoxic to human cell lines at several fold higher concentrations than the MICs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. CDC. 2019 AR threats report. Unites States: CDC; 2019. https://www.cdc.gov/drugresistance/biggest-threats.html.

  2. Saini H, Vadekeetil A, Chhibber S, Harjai K. Azithromycin-ciprofloxacin-impregnated urinary catheters avert bacterial colonization, biofilm formation, and inflammation in a murine model of foreign-body-associated urinary tract infections caused by Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2017;61:e01906–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence. 2018;9:522–54.

    Article  CAS  PubMed  Google Scholar 

  4. Worthington RJ, Richards JJ, Melander C. Small molecule control of bacterial biofilms. Org Biomolecular Chem. 2012;10:7457–74.

    Article  CAS  Google Scholar 

  5. Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int. 2016;2016:2475067.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Joseph R, Naugolny A, Feldman M, Herzog IM, Fridman M, Cohen Y. Cationic pillararenes potently inhibit biofilm formation without affecting bacterial growth and viability. J Am Chem Soc. 2016;138:754–7.

    Article  CAS  PubMed  Google Scholar 

  7. Laverty G, McCloskey AP, Gilmore BF, Jones DS, Zhou J, Xu B. Ultrashort cationic naphthalene-derived self-assembled peptides as antimicrobial nanomaterials. Biomacromolecules. 2014;15:3429–39.

    Article  CAS  PubMed  Google Scholar 

  8. Chen YY, Gopala L, Bheemanaboina RRY, Liu HB, Cheng Y, Geng RX, et al. Novel naphthalimide aminothiazoles as potential multitargeting antimicrobial agents. Acs Med Chem Lett. 2017;8:1331–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chang FY, Peacock JE, Musher DM, Triplett P, MacDonald BB, Mylotte JM, et al. Staphylococcus aureus bacteremia - recurrence and the impact of antibiotic treatment in a prospective multicenter study. Medicine. 2003;82:333–9.

    Article  CAS  PubMed  Google Scholar 

  10. Muhlbacher JM. Naftifine - a topical allylamine antifungal agent. Clin Dermatol. 1991;9:479–85.

    Article  CAS  PubMed  Google Scholar 

  11. Gupta AK, Ryder JE, Cooper EA. Naftifine: a review. J Cutan Med Surg. 2008;12:51–8.

    Article  CAS  PubMed  Google Scholar 

  12. Ryder NS, Frank I, Dupont MC. Ergosterol biosynthesis inhibition by the thiocarbamate antifungal agents tolnaftate and tolciclate. Antimicrob Agents Chemother. 1986;29:858–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Asif M. Rifampin and their analogs: a development of antitubercular drugs. World J Org Chem. 2013;1:14–9.

    Google Scholar 

  14. Steinbach G, Lynch PM, Phillips RKS, Wallace MH, Hawk E, Gordon GB, et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med. 2000;342:1946–52.

    Article  CAS  PubMed  Google Scholar 

  15. Luttinger D, Hlasta DJ. Antidepressant agents. Annu Rep Med Chem. 1987;22:20–30.

    Google Scholar 

  16. Hampp C, Hartzema AG, Kauf TL. Cost-utility analysis of rimonabant in the treatment of obesity. Value Health. 2008;11:389–99.

    Article  PubMed  Google Scholar 

  17. Kameyama T, Nabeshima T. Effects of 1,3-diphenyl-5-(2-dimethylaminopropionamide)-pyrazole[difenamizole] on a conditioned avoidance-response. Neuropharmacology. 1978;17:249–56.

    Article  CAS  PubMed  Google Scholar 

  18. Kumar V, Aggarwal R, Tyagi P, Singh SP. Synthesis and antibacterial activity of some new 1-heteroaryl-5-amino-4-phenyl-3-trifluoromethylpyrazoles. Eur J Med Chem. 2005;40:922–7.

    Article  CAS  PubMed  Google Scholar 

  19. Aggarwal R, Kumar V, Tyagi P, Singh SP. Synthesis and antibacterial activity of some new 1-heteroaryl-5-amino-3H/methyl-4-phenylpyrazoles. Bioorgan Med Chem. 2006;14:1785–91.

    Article  CAS  Google Scholar 

  20. Aslan HG, Ozcan S, Karacan N. The antibacterial activity of some sulfonamides and sulfonyl hydrazones, and 2D-QSAR study of a series of sulfonyl hydrazones. Spectrochim Acta A. 2012;98:329–36.

    Article  CAS  Google Scholar 

  21. Nasr T, Bondock S, Youns M. Anticancer activity of new coumarin substituted hydrazide-hydrazone derivatives. Eur J Med Chem. 2014;76:539–48.

    Article  CAS  PubMed  Google Scholar 

  22. Senkardes S, Kaushik-Basu N, Durmaz I, Manvar D, Basu A, Atalay R, et al. Synthesis of novel diflunisal hydrazide hydrazones as anti-hepatitis C virus agents and hepatocellular carcinoma inhibitors. Eur J Med Chem. 2016;108:301–8.

    Article  CAS  PubMed  Google Scholar 

  23. Brider J, Rowe T, Gibler DJ, Gottsponer A, Delancey E, Branscum MD, et al. Synthesis and antimicrobial studies of azomethine and N-arylamine derivatives of 4-(4-formyl-3-phenyl-1H-pyrazol-1-yl)benzoic acid as potent anti-methicillin-resistant Staphylococcus aureus agents. Medicinal Chem Res. 2016;25:2691–7.

    Article  CAS  Google Scholar 

  24. Allison D, Delancey E, Ramey H, Williams C, Alsharif ZA, Al-khattabi H, et al. Synthesis and antimicrobial studies of novel derivatives of 4-(4-formyl-3-phenyl-1H-pyrazol-1-yl)benzoic acid as potent anti-Acinetobacter baumannii agents. Bioorg Medicinal Chem Lett. 2017;27:387–92.

    Article  CAS  Google Scholar 

  25. Zakeyah AA, Whitt J, Duke C, Gilmore DF, Meeker DG, Smeltzer MS. et al. Synthesis and antimicrobial studies of hydrazone derivatives of 4-[3-(2,4-difluorophenyl)-4-formyl-1H-pyrazol-1-yl]benzoic acid and 4-[3-(3,4-difluorophenyl)-4-formyl-1H-pyrazol-1-yl]benzoic acid. Bioorg Med Chem Lett. 2018;28:2914–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Whitt J, Duke C, Ali MA, Chambers SA, Khan MMK, Gilmore D. et al. Synthesis and antimicrobial studies of 4-[3-(3-fluorophenyl)-4-formyl-1H-pyrazol-1-yl]benzoic acid and 4-[3-(4-fluorophenyl)-4-formyl-1H-pyrazol-1-yl]benzoic acid as potent growth inhibitors of drug-resistant bacteria. ACS Omega. 2019;4:14284–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Whitt J, Duke C, Sumlin A, Chambers SA, Alnufaie R, Gilmore D. et al. Synthesis of hydrazone derivatives of 4-[4-formyl-3-(2-oxochromen-3-yl)pyrazol-1-yl]benzoic acid as potent growth inhibitors of antibiotic-resistant Staphylococcus aureus and Acinetobacter baumannii. Molecules. 2019;24:2051

    Article  PubMed Central  Google Scholar 

  28. Chen CY, Nace GW, Irwin PL. A 6 × 6 drop plate method for simultaneous colony counting and MPN enumeration of Campylobacter jejuni, Listeria monocytogenes, and Escherichia coli. J Microbiol Methods. 2003;55:475–9.

    Article  CAS  PubMed  Google Scholar 

  29. Foerster S, Unemo M, Hathaway LJ, Low N, Althaus CL. Time-kill curve analysis and pharmacodynamic modelling for in vitro evaluation of antimicrobials against Neisseria gonorrhoeae. BMC Microbiol. 2016;16:216.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Werby SH, Cegelski L. Design and implementation of a six-session CURE module using biofilms to explore the chemistry–biology interface. J Chem Educ. 2019;96:2050–4.

    Article  CAS  Google Scholar 

  31. Halicki PCB, Radin V, von Groll A, Nora MV, Pinheiro AC, da Silva PEA, Ramos DF. Antibiofilm potential of arenecarbaldehyde 2-pyridinylhydrazone derivatives against Acinetobacter baumannii. Microbial Drug Resistance. 2019. https://doi.org/10.1089/mdr.2019.0185.

  32. Abdelhady W, Bayer AS, Seidl K, Nast CC, Kiedrowski MR, Horswill AR, et al. Reduced vancomycin susceptibility in an in vitro catheter-related biofilm model correlates with poor therapeutic outcomes in experimental endocarditis due to methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2013;57:1447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stiefel P, Schmidt-Emrich S, Maniura-Weber K, Ren Q. Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide. BMC Microbiol. 2015;15:36.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This publication was made possible by the Research Technology Core of the Arkansas INBRE program, supported by a grant from the National Institute of General Medical Sciences, (NIGMS), P20 GM103429 from the National Institutes of Health to record the Mass Spectrometry data. This publication was made possible by the Arkansas INBRE program, supported by a grant from the National Institute of General Medical Sciences, (NIGMS), P20 GM103429 from the National Institutes of Health, grant number P20 GM109005 (AGB). ABI mini-grant 200027 also helped to accomplish this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad A. Alam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

41429_2020_341_MOESM1_ESM.docx

Design, and Synthesis of 4-[4-Formyl-3-(2-naphthyl)pyrazol-1-yl]benzoic acid Derivatives as Potent Growth Inhibitors of Drug-Resistant Staphylococcus aureus

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alnufaie, R., Alsup, N., KC, H.R. et al. Design and synthesis of 4-[4-formyl-3-(2-naphthyl)pyrazol-1-yl]benzoic acid derivatives as potent growth inhibitors of drug-resistant Staphylococcus aureus. J Antibiot 73, 818–827 (2020). https://doi.org/10.1038/s41429-020-0341-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-020-0341-2

Search

Quick links