Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Conglobatins B–E: cytotoxic analogues of the C2-symmetric macrodiolide conglobatin

Abstract

Chemical investigation of a previously unreported indigenous Australian Streptomyces strain MST-91080 has identified six novel analogues related to the oxazole-pendanted macrodiolide, conglobatin. Phylogenetic analysis of the 16S rRNA gene sequence identified MST-91080 as a species of Streptomyces, distinct from reported conglobatin producer, Streptomyces conglobatus ATCC 31005. Conglobatins B–E diverge from conglobatin through differing patterns of methylation on the macrodiolide skeleton. The altered methyl positions suggest a deviation from the published biosynthetic pathway, which proposed three successive methylmalonyl-CoA extender unit additions to the conglobatin monomer. Conglobatins B1, C1 and C2 exhibited more potent cytotoxic activity selectively against the NS-1 myeloma cell line (IC50 0.084, 1.05 and 0.45 µg ml−1, respectively) compared with conglobatin (IC50 1.39 µg ml−1).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brockmann H, Henkel W. Pikromycin, ein neues Antibiotikum aus Actinomyceten. Naturwissenschaften. 1950;37:138–9.

    Article  CAS  Google Scholar 

  2. Omura S. Macrolide antibiotics: chemistry, biology, and practice. 2nd ed. San Diego: Academic Press; 2002.

  3. Kamal A, Hahn G. 106. Chaksine. Part I. J Chem Soc. 1958;80:555–7.

  4. Polborn KSW, Connolly JD, Huneck S. Structure of the macrocycle bis-lactone lepranthin from the lichen Arthonia impolita; an X-ray analysis. Z Naturforsch. 1995;50b:1111–4.

    Article  Google Scholar 

  5. Kis Z, Furger P, Sigg H. Über die Isolierung von Pyrenophorol. Cell Mol Life Sci. 1969;25:123–4.

    Article  CAS  Google Scholar 

  6. Fuska J, Ivanitskaya L, Horakova K, Kuhr I. The cytotoxic effects of a new antibiotic vermiculine. J Antibiot. 1974;27:141–2.

    Article  CAS  Google Scholar 

  7. Kind R, Zeeck A, Grabley S, Thiericke R, Zerlin M. Secondary metabolites by chemical screening. 30. Helmidiol, a new macrodiolide from Alternaria alternata. J Nat Prod. 1996;59:539–40.

    Article  CAS  Google Scholar 

  8. Kaiser H, Keller-Schierlein W. Stoffwechselprodukte von mikroorganismen. 202. Mitteilung. Strukturaufklärung von elaiophylin: Spektroskopische untersuchungen und abbau. Helv Chim. 1981;64:407–24.

    Article  CAS  Google Scholar 

  9. Klassen JL, Lee SR, Thomas-Poulsen M, Beemelmanns C, Kim KH. Efomycins K and L from a termite-associated Streptomyces sp. M56 and their putative biosynthetic origin. Front Microbiol. 2019;10:1739.

    Article  Google Scholar 

  10. Nakakoshi M, Kimura K-I, Nakajima N, Yoshihama M, Uramoto M. SNA-4606-1, a new member of elaiophylins with enzyme inhibition activity against testosterone 5 α-reductase. J Antibiot. 1999;52:175–7.

    Article  CAS  Google Scholar 

  11. Yamada T, Kikuchi T, Tanaka R, Numata A. Halichoblelides B and C, potent cytotoxic macrolides from a Streptomyces species separated from a marine fish. Tetrahedron Lett. 2012;53:2842–6.

    Article  CAS  Google Scholar 

  12. Yamada T, Minoura K, Numata A. Halichoblelide, a potent cytotoxic macrolide from a Streptomyces species separated from a marine fish. Tetrahedron Lett. 2002;43:1721–4.

    Article  CAS  Google Scholar 

  13. Westley JW, Liu C-M, Evans RH, Blount JF. Conglobatin, a novel macrolide dilactone from Streptomyces conglobatus ATCC 31005. J Antibiot. 1979;32:874–7.

    Article  CAS  Google Scholar 

  14. Hashida J, Niitsuma M, Iwatsuki M, Mori M, Ishiyama A, Namatame M, et al. Panowamycins A and B, new antitrypanosomal isochromans produced by Streptomyces sp. K07-0010. J Antibiot. 2012;65:197–202.

    Article  CAS  Google Scholar 

  15. Huang W, Ye M, Zhang L, Wu Q, Zhang M, Xu J, et al. FW-04-806 inhibits proliferation and induces apoptosis in human breast cancer cells by binding to N-terminus of Hsp90 and disrupting Hsp90-Cdc37 complex formation. Mol Cancer. 2014;13:150.

    Article  Google Scholar 

  16. Otoguro K, Iwatsuki M, Ishiyama A, Namatame M, Nishihara-Tsukashima A, Sato S, et al. In vitro and in vivo antiprotozoal activities of bispolides and their derivatives. J Antibiot. 2010;63:275–7.

    Article  CAS  Google Scholar 

  17. Zhou Y, Murphy AC, Samborskyy M, Prediger P, Dias LC, Leadlay PF. Iterative mechanism of macrodiolide formation in the anticancer compound conglobatin. Chem Biol. 2015;22:745–54.

    Article  CAS  Google Scholar 

  18. Lacey HJ, Gilchrist CL, Crombie A, Kalaitzis JA, Vuong D, Rutledge PJ, et al. Nanangenines: drimane sesquiterpenoids as the dominant metabolite cohort of a novel Australian fungus, Aspergillus nanangensis. Beilstein J Org Chem. 2019;15:2631–43.

    Article  CAS  Google Scholar 

  19. Lacey HJ, Vuong D, Pitt JI, Lacey E, Piggott AM. Kumbicins A–D: bis-indolyl benzenoids and benzoquinones from an Australian soil fungus, Aspergillus kumbius. Aust J Chem. 2016;69:152–60.

    Article  CAS  Google Scholar 

  20. Li H, Gilchrist CL, Lacey HJ, Crombie A, Vuong D, Pitt JI, et al. Discovery and heterologous biosynthesis of the burnettramic acids: rare PKS-NRPS-derived bolaamphiphilic pyrrolizidinediones from an Australian Fungus, Aspergillus burnettii. Org Lett. 2019;21:1287–91.

    Article  CAS  Google Scholar 

  21. Lacey E, Tennant S. Secondary metabolites: the focus of biodiscovery and perhaps the key to unlocking new depths in taxonomy. Microbiol Aust. 2003;24:34–5.

    Article  Google Scholar 

  22. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1.

    Article  CAS  Google Scholar 

  23. Sievers F, Higgins DG. Clustal Omega, accurate alignment of very large numbers of sequences. Methods Mol Biol. 2014;1079:105–16.

  24. Labeda D, Goodfellow M, Brown R, Ward A, Lanoot B, Vanncanneyt M, et al. Phylogenetic study of the species within the family Streptomycetaceae. Antonie Van Leeuwenhoek. 2012;101:73–104.

    Article  CAS  Google Scholar 

  25. Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.

    Article  Google Scholar 

  26. Letunic I, Bork P. Interactive tree of life (ITOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–5.

    Article  CAS  Google Scholar 

  27. Williams S, Goodfellow M, Alderson G, Wellington E, Sneath P, Sackin M. Numerical classification of Streptomyces and related genera. Microbiology. 1983;129:1743–813.

    Article  CAS  Google Scholar 

  28. Spížek J, Málek I, Doležilová L, Vondráček M, Vaněk Z. Metabolites of Streptomyces noursei. Folia Microbiol. 1965;10:259–62.

    Article  Google Scholar 

  29. Sujarit K, Kudo T, Ohkuma M, Pathom-Aree W, Lumyong S. Streptomyces palmae sp. nov., isolated from oil palm (Elaeis guineensis) rhizosphere soil. Int J Syst Evol Microbe. 2016;66:3983–8.

    Article  CAS  Google Scholar 

  30. Schregenberger C, Seebach D. Synthesis and determination of the absolute configuration of the macrodiolide (+)-conglobatin. Tetrahedron Lett. 1984;25:5881–4.

    Article  CAS  Google Scholar 

  31. Huang W, Wu Q-d, Zhang M, Kong Y-L, Cao P-R, Zheng W, et al. Novel Hsp90 inhibitor FW-04-806 displays potent antitumor effects in HER2-positive breast cancer cells as a single agent or in combination with lapatinib. Cancer Lett. 2015;356:862–71.

    Article  CAS  Google Scholar 

  32. Dramae A, Nithithanasilp S, Choowong W, Rachtawee P, Prabpai S, Kongsaeree P, et al. Antimalarial 20-membered macrolides from Streptomyces sp. BCC33756. Tetrahedron. 2013;69:8205–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr John Kalaitzis (MQ) for acquisition of NMR data and Dr Matthew McKay (MQ) for acquisition of HRMS data. Heather Lacey is the recipient of an Australian Government Research Training Program Scholarship. This research was funded, in part, by the Australian Research Council (FT130100142, FT160100233) and the Cooperative Research Centres Projects scheme (CRCPFIVE000119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather J. Lacey.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lacey, H.J., Booth, T.J., Vuong, D. et al. Conglobatins B–E: cytotoxic analogues of the C2-symmetric macrodiolide conglobatin. J Antibiot 73, 756–765 (2020). https://doi.org/10.1038/s41429-020-0332-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-020-0332-3

This article is cited by

Search

Quick links