Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Special Feature: Brief Communication
  • Published:

Axl and immune checkpoints inhibitors from fruiting bodies of Pleurocybella porrigens

Abstract

A novel compound (1) and three known ones (24) were isolated from the fruiting bodies of Pleurocybella porrigens. The structure of the novel compound was determined by 1D and 2D NMR and HRESIMS data. The biological activity of 13 was evaluated using the A549 lung cancer cell line. The results showed the inhibitory activity of compounds 13 on the expression of Axl and immune checkpoint molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

References

  1. Kawaguchi T, Suzuki T, Kobayashi Y, Kodani S, Hirai H, Kawagishi H, et al. Unusual amino acid derivatives from the mushroom Pleurocybella porrigens. Tetrahedron. 2010;66:504–7.

    Article  CAS  Google Scholar 

  2. Suzuki T, Amano Y, Fujita M, Kobayashi Y, Dohra H, Kawagishi H, et al. Purification, characterization, and cDNA cloning of a lectin from the mushroom Pleurocybella porrigens. Biosci Biotechnol Biochem. 2009;73:702–9.

    Article  CAS  Google Scholar 

  3. Wakimoto T, Asakawa T, Akahoshi S, Suzuki T, Nagai K, Kawagishi H, et al. Proof of the existence of an unstable amino acid: Pleurocybellaziridine in Pleurocybella porrigens. Angew Chem - Int Ed. 2011;50:1168–70.

    Article  CAS  Google Scholar 

  4. Sasaki H. Sugihiratake mushroom (Angel’s Wing Mushroom)-induced cryptogenic encephalopathy may involve vitamin D analogues. Biol Pharm Bull. 2006;29:2514–8.

    Article  CAS  Google Scholar 

  5. Akiyama H, Toida T, Sakai S, Amakura Y, Kondo K, Sugita-Konishi Y, et al. Determination of cyanide and thiocyanate in Sugihiratake mushroom using HPLC method with fluorometric detection. J Heal Sci. 2006;52:73–7.

    Article  CAS  Google Scholar 

  6. Nomura Y, Kusumi T, Ishitsuka M, Kakisawa H. 2,3-dimethyl-4-methoxybutenolides from red algae, Coeloseira pacifica and Ahnfeltia paradoxa. Chem Lett. 1980;277:955–6.

    Article  Google Scholar 

  7. Shi H, Yu S, Liu D, Van Ofwegen L, Proksch P, Lin W. Sinularones A-I, new cyclopentenone and butenolide derivatives from a marine soft coral Sinularia sp. and their antifouling activity. Mar Drugs. 2012;10:1331–44.

    Article  CAS  Google Scholar 

  8. Zhang J, Liang Y, Liao XJ, Deng Z, Xu SH. Isolation of a new butenolide from the South China Sea gorgonian coral Subergorgia suberosa. Nat Prod Res. 2014;28:150–5.

    Article  CAS  Google Scholar 

  9. Koshino H, Yoshihara T, Sakamura S, Shimanuki T, Sato T, Tajimi A. Novel C-11 epoxy fatty acid from Stromata of Epichloe typhina on Phleum pratense. Agric Biol Chem. 1989;53:2527–8.

    CAS  Google Scholar 

  10. Mansoor TA, Hong J, Lee CO, Sim CJ, Im KS, Lee DS, et al. New cytotoxic metabolites from a marine sponge Homaxinella sp. J Nat Prod. 2004;67:721–4.

    Article  CAS  Google Scholar 

  11. Wegerski CJ, France D, Cornell-Kennon S, Crews P. Using a kinase screen to investigate the constituents of the sponge Stelletta clavosa obtained from diverse habitats. Bioorgan. Med Chem 2004;12:5631–7.

    Article  CAS  Google Scholar 

  12. Kumar N, Mohandas C, Nambisan B, Kumar DRS, Lankalapalli RS. Isolation of proline-based cyclic dipeptides from Bacillus sp. N strain associated with rhabitid entomopathogenic nematode and its antimicrobial properties. World J Microbiol Biotechnol. 2013;29:355–64.

    Article  CAS  Google Scholar 

  13. Rankin EB, Giaccia AJ. The receptor tyrosine kinase Axl in cancer progression. Cancers (Basel). 2016;8:1–16.

    Article  Google Scholar 

  14. Azuma K, Ota K, Kawahara A, Hattori S, Iwama E, Harada T, et al. Association of PD-L1 overexpression with activating EGFR mutations in surgically resected nonsmall-cell lung cancer. Ann Oncol. 2014;25:1935–40.

    Article  CAS  Google Scholar 

  15. Hutterer M, Knyazev P, Abate A, Reschke M, Maier H, Stefanova N, et al. Axl and growth arrest-specific gene 6 are frequently overexpressed in human gliomas and predict poor prognosis in patients with glioblastoma multiforme. Clin Cancer Res. 2008;14:130–8.

    Article  CAS  Google Scholar 

  16. Wang X, Saso H, Iwamoto T, Xia W, Gong Y, Pusztai L, et al. TIG1 promotes the development and progression of inflammatory breast cancer through activation of Axl kinase. Cancer Res. 2013;73:6516–25.

    Article  CAS  Google Scholar 

  17. Tsukita Y, Fujino N, Miyauchi E, Saito R, Fujishima F, Itakura K, et al. Axl kinase drives immune checkpoint and chemokine signalling pathways in lung adenocarcinomas. Mol Cancer. 2019;18:1–6.

    Article  Google Scholar 

  18. He R, Wang B, Wakimoto T, Wang M, Zhu L, Abe I. Cyclodipeptides from metagenomic library of a Japanese marine sponge. J Braz Chem Soc. 2013;24:1926–32.

    CAS  Google Scholar 

  19. Zhu C, Wei Y, Wei X. Axl receptor tyrosine kinase as a promising anti-cancer approach: Functions, molecular mechanisms and clinical applications. Mol Cancer. 2019;18:1–22.

    Article  Google Scholar 

  20. Tang S, Kim PS. A high-affinity human PD-1/PD-L2 complex informs avenues for small-molecule immune checkpoint drug discovery. Proc Natl Acad Sci USA. 2019;116:24500–6.

    Article  CAS  Google Scholar 

  21. Zak KM, Grudnik P, Magiera K, Dömling A, Dubin G, Holak TA. Structural biology of the immune checkpoint receptor PD-1 and its ligands PD-L1/PD-L2. Structure 2017;25:1163–74.

    Article  CAS  Google Scholar 

  22. Malya IY, Wu J, Harada E, Toda M, D’Alessandro-Gabazza CN, Kawagishi H, et al. Plant growth regulators and Axl and immune checkpoint inhibitors from the edible mushroom Leucopaxillus giganteus. Biosci Biotechnol Biochem. 2020. https://doi.org/10.1080/09168451.2020.1743170.

Download references

Acknowledgements

This research was funded by a Grant-in Aid for Scientific Research on Innovative Areas “Frontier Research on Chemical Communications” from MEXT (No 17H06402) and Specific Research Grant from Takeda Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirokazu Kawagishi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ridwan, A.Y., Wu, J., Harada, E. et al. Axl and immune checkpoints inhibitors from fruiting bodies of Pleurocybella porrigens. J Antibiot 73, 733–736 (2020). https://doi.org/10.1038/s41429-020-0323-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-020-0323-4

Search

Quick links