Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Simpotentin, a new potentiator of amphotericin B activity against Candida albicans, produced by Simplicillium minatense FKI-4981

Abstract

Simpotentin, a new potentiator of amphotericin B activity against Candida albicans and Cryptococcus neoformans, was isolated from the culture broth of Simplicillium minatense FKI-4981 by Diaion HP-20 column chromatography, centrifugal partition chromatography, and preparative HPLC. The structure of simpotentin was elucidated by spectroscopic analyses including NMR and MS. The compound has a mannose core to which two medium-chain fatty acids are linked. Simpotentin was found to potentiate amphotericin B activity against C. albicans by the microdilution method.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Pfaller MA, Pappas PG, Wingard JR. Invasive fungal pathogens: current epidemiological trends. Clin Infect Dis. 2006;43(Suppl 1):S3–S14.

    Article  CAS  Google Scholar 

  2. Pappas PG, Rex JH, Lee J, Hamill RJ, Larsen RA, Powderly W, Kauffman CA, Hyslop N, Mangino JE, Chapman S, Horowitz HW, Edwards JE, Dismukes WE, NIAID Mycoses Study Group. A prospective observational study of candidemia: epidemiology, therapy, and influences on mortality in hospitalized adult and pediatric patients. Clin Infect Dis. 2003;37:634–43.

    Article  Google Scholar 

  3. Oura M, Sternberg TH, Wright ET. A new antifungal antibiotic, amphotericin B. Antibiot Annu. 1956;3:566–73.

    CAS  Google Scholar 

  4. Ishijima H, Uchida R, Ohtawa M, Kondo A, Nagai K, Shima K, Nonaka K, Masuma R, Iwamoto S, Onodera H, Nagamitsu T, Tomoda H. Simplifungin and valsafungins, antifungal antibiotics of fungal origin. J Org Chem. 2016;81:7373–83.

    Article  CAS  Google Scholar 

  5. Bock K, Lundt I, Pedersen C. Assignment of anomer structure to carbohydrates through geminal 13C-1H coupling constants. Tetrahedron Lett. 1973;13:1037–40.

    Article  Google Scholar 

  6. Clinical and Laboratory Standards Institute (CLSI). Reference method for broth dilution antifungal susceptibility testing of yeasts. CLSI document M27-A3. 3rd edn. Wayne, PA: Clinical and Laboratory Standards Institute; 2008.

  7. Gams W, Zare R. A revision of Verticillium sect. Prostrata. III. Generic Classif Nova Hedwig. 2001;72:329–37.

    Google Scholar 

  8. McCorkindale NJ, Hutchinson SA, McRitchie AC, Sood GR. Lamellicolic anhydride, 4-O-carbomethoxylamellicolic anhydride and monomethyl 3-chlorolamellicolate, metabolites of Verticillium lamellicola. Tetrahedron. 1983;39:2283–8.

    Article  CAS  Google Scholar 

  9. Rowin GL, Miller JE, Albers-Schönberg G, Onishi JC, Davis D, Dulaney EL. Verlamelin, a new antifungal agent. J Antibiot. 1986;39:1772–5.

    Article  CAS  Google Scholar 

  10. Takata K, Iwatsuki M, Yamamoto T, Shirahata T, Nonaka K, Masuma R, Hayakawa Y, Hanaki H, Kobayashi Y, Petersson GA, Ōmura S, Shiomi K. Aogacillins A and B produced by Simplicillium sp. FKI-5985: new circumventors of arbekacin resistance in MRSA. Org Lett. 2013;15:4678–81.

    Article  CAS  Google Scholar 

  11. Itoh S, Honda H, Tomita F, Suzuki T. Rhamnolipids produced by Pseudomonas aeruginosa grown on n-paraffin. J Antibiot. 1971;24:855–9.

    Article  CAS  Google Scholar 

  12. Haba E, Pinazo A, Jauregui O, Espuny MJ, Infante MR, Manresa A. Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotechnol Bioeng. 2003;81:316–22.

    Article  CAS  Google Scholar 

  13. Dobler L, Vilela LF, Almeida RV, Neves BC. Rhamnolipids in perspective: gene regulatory pathways, metabolic engineering, production and technological forecasting. N Biotechnol. 2016;33:123–35.

    Article  CAS  Google Scholar 

  14. Stanghellini ME, Miller RM. Biosurfactants: Their identity and potential efficacy in the biological control of zoosporic plant pathogens. Plant Dis. 1997;81:4–12.

    Article  CAS  Google Scholar 

  15. Kristoffersen V, Rämä T, Isaksson J, Andersen JH, Gerwick WH, Hansen E. Characterization of rhamnolipids produced by an arctic marine bacterium from the pseudomonas fluorescence group. Mar Drugs. 2018;16:E163.

    Article  Google Scholar 

  16. Sorensen KN, Kim KH, Takemoto JY. In vitro antifungal and fungicidal activities and erythrocyte toxicities of cyclic lipodepsinonapeptides produced by Pseudomonas syringae pv. syringae. Antimicrob Agents Chemother. 1996;40:2710–3.

    Article  CAS  Google Scholar 

  17. Takemoto JY, Bensaci M, De Lucca AJ, Cleveland TE, Gandhi NR, Skebba VP. Inhibition of fungi from diseased grape by syringomycin E-rhamnolipid mixture. Am J Enol Vitic. 2010;61:120–4.

    CAS  Google Scholar 

  18. Takemoto, JY, Brand JG, Kaulin YA, Malex, VV, Schabina LV, Blasko, K. The syringomycins: lipodepsipeptide pore formers from plant bacterium. In: Menestrina, G, Serra MD & Lazarovic, P, editors. Pore forming peptides and protein toxins. London: Taylor & Francis; 2003. p. 260–71.

  19. Le Dang Q, Shin TS, Park MS, Choi YH, Choi GJ, Jang KS, Kim IS, Kim JC. Antimicrobial activities of novel mannosyl lipids isolated from the biocontrol fungus Simplicillium lamellicola BCP against phytopathogenic bacteria. J Agric Food Chem. 2014;62:3363–70.

    Article  Google Scholar 

  20. Nonaka K, Kaifuchi S, Ōmura S, Masuma R. Five new Simplicillium species (Cordycipitaceae) from soils in Tokyo, Japan. Mycoscience. 2012;54:42–53.

    Article  Google Scholar 

  21. Clinical and Laboratory Standards Institute (CLSI). Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard. CLSI document M38-A2. 3rd edn. Wayne, PA: Clinical and Laboratory Standards Institute; 2008.

  22. Koyama N, Nagahiro T, Yamaguchi Y, Masuma R, Tomoda H, Ōmura S. Stemphones, novel potentiators of imipenem activity against methicillin-resistant Staphylococcus aureus, produced by Aspergillus sp. FKI-2136. J Antibiot. 2005;58:695–703.

    Article  CAS  Google Scholar 

  23. Kaneko M, Matsuda D, Ohtawa M, Fukuda T, Nagamitsu T, Yamori T, Tomoda H. Potentiation of bleomycin in Jurkat cells by fungal pycnidione. Biol Pharm Bull. 2012;35:18–28.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We express our thanks to Dr. Kenichiro Nagai and Ms. Noriko Sato of the School of Pharmacy, Kitasato University for the measurements of NMR and mass spectra. This work was supported by JSPS KAKENHI Grant Numbers 16H05095 (to RU) and 21310146 (to HT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Tomoda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uchida, R., Kondo, A., Yagi, A. et al. Simpotentin, a new potentiator of amphotericin B activity against Candida albicans, produced by Simplicillium minatense FKI-4981. J Antibiot 72, 134–140 (2019). https://doi.org/10.1038/s41429-018-0128-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-018-0128-x

This article is cited by

Search

Quick links