Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Three representative types of WAXD/SAXS patterns to establish the bimodal structure concept of stacked lamellae in isotactic polypropylene spherulites

Abstract

Two types of lamellar stacking model were proposed for the inner structure of the melt-grown spherulites of isotactic polypropylene (iPP): the edge-on structure (flat lamellar planes stand on the spherulite plane, and a*-axis // growth direction of spherulite, b-axis ┴ spherulite plane, and c-axis // spherulite plane) and the flat-on structure (flat lamellar planes lay on the spherulite plane, a*-axis // growth direction, b-axis // spherulite plane, and c-axis ┴ spherulite plane). After a literature review was performed, the observed X-ray scattering data were not high quality and could not be used to establish these bimodal structures; moreover, the X-ray data analyses were not performed satisfactorily. As a result, the derivations of actual structures were still debatable. We performed simultaneous time-resolved WAXD/SAXS measurements using a synchrotron X-ray microbeam technique. The collected data were classified into three sets of completely different WAXD/SAXS patterns. Detailed quantitative analysis enabled the determination of the spatial orientations of the stacked lamellae and related crystallographic axes. Although the bimodal structure of iPP spherulites was considered to be a well-known and already-established concept for long years, the bimodal structure was successfully confirmed for the first time in the present study, making the concrete discussions on the growth mechanism of the iPP spherulites possible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Crist B, Schultz JM. Polymer spherulites: a critical review. Progr Polym Sci. 2016. https://doi.org/10.1016/j.progpolymsci.2015.11.006.

  2. Schultz JM. Polymer crystallization. ISBN 08412-3669-0. Washington, D. C.: Oxford University; 2001. https://api.semanticscholar.org/CorpusID:135784519.

  3. Growth of polymer crystals. In: Piorkowska E, Rutledge G, editors. Handbook of polymer crystallization. New York: Wiley; 2013. https://doi.org/10.1002/9781118541838.ch6.

  4. Keller A. The spherulitic structure of crystalline polymers. Part II. The problem of molecular orientation in polymer spherulites. J Polym Sci. 1955. https://doi.org/10.1002/pol.1955.120178503.

  5. Fujiwara Y. The superstructure of melt-crystallized polyethylene I. Screwlike orientation of unit cell in polyethylene spherulites with periodic extinction rings. J Appl Polym Sci. 1960. https://doi.org/10.1002/app.1960.070041002.

  6. Rosenthal M, Anokhin DV, Luchnikov VA, Davis RJ, Riekel C, Burghammer M, et al. Microstructure of banded polymer spherulites: studies with micro-focus X-ray diffraction. IOP Conf Ser Matter Sci Eng. 2010. https://doi.org/10.1088/1757-899X/14/1/012014.

  7. Yamamoto H, Yoshioka T, Funaki K, Masunaga H, Woo EM, Tashiro K. Synchrotron-X-ray-analyzed inner structure of polyethylene spherulites and atomistic simulation of a trigger of lamellar twisting phenomenon. Polym J. 2022. https://doi.org/10.1038/s41428-022-00710-3.

  8. Hu J, Tashiro K. Time-resolved imaging of the phase transition in the melt-grown spherulites of isotactic polybutene-1 as detected by the two-dimensional polarized IR imaging technique. J Phys Chem B. 2016. https://doi.org/10.1021/acs.jpcb.6b01229.

  9. Tashiro K, Yamamoto H, Funaki K, Hu J. Synchrotron microbeam X-ray scattering study of the crystallite orientation in the spherulites of isotactic poly(butene-1) crystallized isothermally at different temperatures. Polym J. 2019. https://doi.org/10.1038/s41428-018-0128-5.

  10. Abe H, Kikkawa Y, Iwata T, Aoki H, Akehata T, Doi Y. Microscopic visualization on crystalline morphologies of thin films for poly[(R)-3-hydroxybutyric acid] and its copolymer. Polymer. 2000. https://doi.org/10.1016/S0032-3861(99)00231-1.

  11. Tsuji M, Novillo LFA, Murakami S, Kohjiya S. Morphology of melt-crystallized poly(ethylene 2,6-naphthalate) thin films studied by transmission electron microscopy. J Mater Res. 1999. https://doi.org/10.1557/JMR.1999.0037.

  12. Agbolaghi S, Zenoozi S. A comprehensive review on poly(3-alkylthiophene)-based crystalline structures, protocols and electronic applications. Org Electron. 2017. https://doi.org/10.1016/j.orgel.2017.09.038.

  13. Padden FJ, Keith HD. Spherulitic crystallization in polypropylene. J Appl Phys. 1959. https://doi.org/10.1063/1.1734985.

  14. Keith HD, Padden Jr FJ. The optical behavior of spherulites in crystalline polymers. Part 11. The growth and structure of the spherulites. J Polym Sci. 1959. https://doi.org/10.1002/pol.1959.1203913510.

  15. Khoury F. The spherulitic crystallization of isotactic polypropylene from solution: on the evolution of monoclinic spherulites from dendritic chain-folded crystal precursors. J Res Natl Bur Stand Sec A Phys Chem. 1966. https://doi.org/10.6028/jres.070A.006.

  16. Bassett DC, Frank FC, Keller A. Lamellae and their organization in melt-crystallized polymers. Phil Trans R Soc Lond A. 1994. https://doi.org/10.1098/rsta.1994.0079.

  17. Bassett DC. Polymer spherulites: a modern assessment. J Macromol Sci Part B Phys. 2003. https://doi.org/10.1081/MB-120017116.

  18. In: Auriemma F, Alfonso GC, De Rosa C, editors. Polymer crystallization II: from chain microstructure to processing. Advances in polymer science. Springer; 2016. https://doi.org/10.1007/978-3-319-50684-5.

  19. Bruckner S, Meille SV, Petraccone V, Pirozzi B. Polymorphism in isotactic polypropylene. Progr Polym Sci. 1991. https://doi.org/10.1016/0079-6700(91)90023-E.

  20. Lotz B, Wittmann JC, Lovinger AJ. Structure and morphology of poly(propylene): a molecular analysis. Polymer. 1996. https://doi.org/10.1016/0032-3861(96)00370-9.

  21. Varga J. Supermolecular structure of isotactic polypropylene. J Mater Sci. 1992. https://doi.org/10.1007/BF00540671.

  22. Natta G, Corradini P. Structure and properties of isotactic polypropylene. Nuovo Cimento Suppl. 1960. https://doi.org/10.1007/BF02731859.

  23. Natta G, Corradini P. The crystal structure of a new type of polypropylene. Atti Accad Naz Lincei-Memorie. 1955. https://doi.org/10.1016/B978-1-4831-9883-5.50006-4.

  24. Natta G, Corradini P, Cesari M. Crystal structure of isotactic polypropylene. Rend Accad Naz Lincei. 1956. https://doi.org/10.1007/BF02731859.

  25. Auriemma F, Rutz de Ballesteros O, De Rosa C, Corradini P. Structure disorder in the α form of isotactic polypropylene. Macromolecules. 2000. https://doi.org/10.1021/ma0002895.

  26. Mencik Z. Crystal structure of isotactic polypropylene. J Macromol Sci Phys. 1972. https://doi.org/10.1080/00222347208224792.

  27. Hikosaka M, Seto T. The order of the molecular chains in isotactic polypropylene crystals. Polym J. 1973. https://doi.org/10.1295/polymj.5.111.

  28. Keith HD, Padden FJ, Walter NM, Wyckoff HW. Evidence for the second crystal form of polypropylene. J Appl Phys. 1959. https://doi.org/10.1063/1.1734986.

  29. Jones AT, Aizlewood JM, Beckett DR. Crystalline forms of isotactic polypropylene. Makromol Chem. 1963. https://doi.org/10.1002/macp.1964.020750113.

  30. Addink EJ, Beintema J. Polymorphism of crystalline polypropylene. Polymer. 1961. https://doi.org/10.1016/0032-3861(61)90021-0.

  31. Meille SV, Ferro DR, Brückner S, Lovinger AJ, Padden FJ. Structure of α-isotactic polypropylene: a long-standing structure puzzle. Macromolecules. 1994. https://doi.org/10.1021/ma00087a034.

  32. Samuels RJ, Yee RY. Characterization of the structure and organization of α-form crystals in type III and type IV isotactic polypropylene spherulites. J Polym Sci A2 Polym Phys Ed. 1972. https://doi.org/10.1002/pol.1972.160100301.

  33. Dorset DL, McCourt MP, Kopp S, Schumacher M, Okihara T, Lotz B. Isotactic polypropylene, β-phase: a study in frustration. Polymer. 1998. https://doi.org/10.1016/S0032-3861(97)10160-4.

  34. Morrow DR. Polymorphism in isotactic polypropylene. J Macromol Sci Phys Ed. 1969. https://doi.org/10.1016/0079-6700(91)90023-E.

  35. Pae KD. γ–α Solid–solid transition of isotactic polypropylene. J Polym Sci A2 Polym Phys Ed. 1968. https://doi.org/10.1002/pol.1968.160060401.

  36. Meille SV, Brückner S. Non-parallel chains in crystalline γ-isotactic polypropylene. Nature. 1989. https://doi.org/10.1038/340455a0.

  37. Meille SV, Brückner S, Porzio W. γ-Isotactic polypropylene. A structure with nonparallel chain axes. Macromolecules. 1990. https://doi.org/10.1021/ma00220a014.

  38. van Erp TB, Balzano L, Peters GWM. Oriented gamma phase in isotactic polypropylene homopolymer. Macroletters. 2012. https://doi.org/10.1021/mz3000978.

  39. Lotz B, Graff S, Wittmann JC. Crystal morphology of the γ (triclinic) phase of isotactic polypropylene and its relation to the α phase. J Polym Sci Polym Phys Ed. 1986. https://doi.org/10.1002/polb.1986.090240909.

  40. Vittoria V. Effect of annealing on the structure of quenched isotactic polypropylene. J Macromol Sci Phys. 1989. https://doi.org/10.1080/00222348908215238.

  41. Gezovich DM, Geil PH. Deformation and aging of quenched polypropylene. Polym Eng Sci. 1968. https://doi.org/10.1002/pen.760080306.

  42. Gezovich DM, Geil PH. Morphology of quenched polypropylene. Polym Eng Sci. 1968. https://doi.org/10.1002/pen.760080305.

  43. Corradini P, De Rosa C, Guerra G, Petraccone V. Comments on the possibility that the mesomorphic form of isotactic polypropylene is composed of small crystals of the β crystalline form. Polym Commun. 1989;30:281–5.

    CAS  Google Scholar 

  44. Norton DR, Keller A. The spherulitic and lamellar morphology of melt-crystallized isotactic polypropylene. Polymer. 1985. https://doi.org/10.1016/0032-3861(85)90108-9.

  45. Assouline E, Wachtel E, Grigull S, Lustiger A, Wagner HD, Marom G. Lamellar twisting in an isotactic polypropylene transcrystallinity investigated by synchrotron microbeam X-ray diffraction. Polymer. 2001. https://doi.org/10.1016/S0032-3861(01)00087-8.

  46. Pawlak A, Chapel JP, Piorkowska E. Morphology of iPP spherulites crystallized in a temperature gradient. J Appl Polym Sci. 2002. https://doi.org/10.1002/app.11269.

  47. Fujiwara Y, Goto T, Yamashita Y. Comparison of premelting and recrystallization behavior of 3-phase isotactic polypropylene by heating and cooling at different rates. Polymer. 1987. https://doi.org/10.1016/0032-3861(87)90433-2.

  48. van Erp TB, Balzano L, Spoolstra AB, Govaert LE, Petres GWM. Quantification of non-isothermal multi-phase crystallization of isotactic polypropylenes; the influence of shear and pressure. Polymer. 2013. https://doi.org/10.1016/j.polymer.2012.10.027.

  49. van Erp TB, Rozemond PC, Peters GWM. Flow-enhanced crystallization kinetics of iPP during cooling at elevated pressure, characterization, validation and development. Macromol Theory Simul. 2013. https://doi.org/10.1002/mats.201300004.

  50. Sauer JA, Pae KD. Structure and thermal behavior of pressure‐crystallized polypropylene. J Appl Phys. 1968. https://doi.org/10.1063/1.1655893.

  51. Fitchmun DR, Mencik Z. Morphology of injection-molded polypropylene. J Polym Sci Polym Phys Ed. 1973. https://doi.org/10.1002/pol.1973.180110512.

  52. Leugering HJ, Krnsch G. Beeinflussung der kristallstruktur von isotaktischem polypropylen durch kristallisation aus orientierten schmelzen. Angew Makromol Chem. 1973. https://doi.org/10.1002/apmc.1973.050330102.

  53. Mencik Z, Fitchmun DR. Texture of injection-molded polypropylene. J Polym Sci Polym Phys Ed. 1973. https://doi.org/10.1002/pol.1973.180110513.

  54. Dragaun H, Hubeny H, Muschik H. Shear-induced β-form crystallization in isotactic polypropylene. J Polym Sci Polym Phys Ed. 1977. https://doi.org/10.1002/pol.1977.180151008.

  55. Kumaraswamy G, Issaian AM, Kornfield JA. Shear-enhanced crystallization in isotactic polypropylene. 1. Correspondence between in situ rheo-optics and ex situ structure determination. Macromolecules. 1999. https://doi.org/10.1021/ma035840n.

  56. Kumaraswamy G, Verma RK, Issaian AM, Wang P, Kornfield JA, Yeh F, et al. Shear-enhanced crystallization in isotactic polypropylene part 2. Analysis of the formation of the oriented skin. Polymer. 2000. https://doi.org/10.1016/S0032-3861(00)00236-6.

  57. Riekel C, Karger-Kocsis J. Structural investigation of the phase transformation in the plastic zone of a β-phase isotactic polypropylene by synchrotron radiation microdiffraction. Polymer. 1999. https://doi.org/10.1016/S0032-3861(98)00278-X.

  58. Somani RH, Hsiao BS, Nogales A, Srinivas S, Tsou AH, Sics I, et al. Structure development during shear flow-induced crystallization of iPP: in-situ small-angle X-ray scattering study. Macromolecules. 2000. https://doi.org/10.1021/ma0106191.

    Article  Google Scholar 

  59. Somani RH, Hsiao BS, Nogales A. Structure development during shear flow induced crystallization of iPP: in situ wide-angle X-ray diffraction study. Macromolecules. 2001;34:5902–9.

    Article  CAS  Google Scholar 

  60. Kumaraswamy G, Verma RK, Kornfield JA, Yeh FJ, Hsiao BS. Shear-enhanced crystallization in isotactic polypropylene. In-situ synchrotron SAXS and WAXD. Macromolecules. 2004;37:9005–17.

    Article  CAS  Google Scholar 

  61. Shmueli Y, Lin Y-C, Lee S, Zhernenkov M, Tannenbaum R, Marom G, et al. In situ time-resolved X-ray scattering study of isotactic polypropylene in additive manufacturing. ACS Appl Mater Interfaces. 2019. https://doi.org/10.1021/acsami.9b12908.

  62. Yamada K, Matsumoto S, Tagashira K, Hikosaka M. Isotacticity dependence of spherulitic morphology of isotactic polypropylene. Polymer. 1998. https://doi.org/10.1016/S0032-3861(97)10208-7.

  63. Sakurai T, Nozue Y, Kasahara T, Mizunuma K, Yamaguchi N, Tashiro K, et al. Structural deformation behavior of isotactic polypropylene with different molecular characteristics during hot drawing process. Polymer. 2005. https://doi.org/10.1016/j.polymer.2005.01.106.

  64. Wenig W, Stolzenberger C. The influence of molecular weight and mold temperature on the skin—core morphology in injection-molded polypropylene parts containing weld lines. J Mater Sci. 1996. https://doi.org/10.1007/BF01152966.

  65. Jerschow P, Janeschitz-Kriegl H. The role of long molecules and nucleating agents in shear induced crystallization of isotactic polypropylenes. Int Polym Process. 1997. https://doi.org/10.3139/217.970072.

  66. Stern C, Frick A, Weickert G. Relationship between the structure and mechanical properties of polypropylene: effects of the molecular weight and shear-induced structure. J Appl Polym Sci. 2007. https://doi.org/10.1002/app.24156.

  67. Morrow DR, Newman BA. Crystallization of low‐molecular‐weight polypropylene fractions. J Appl Phys. 1968. https://doi.org/10.1063/1.1655891.

  68. Seki M, Thurman DW, Oberhauser JP, Kornfield JA. Shear-mediated crystallization of isotactic polypropylene: the role of long chain-long chain overlap. Macromolecules. 2002. https://doi.org/10.1021/ma011359q.

  69. Awaya H. Morphology of different types of isotactic polypropylene spherulites crystallized from melt. Polymer. 1988. https://doi.org/10.1016/0032-3861(88)90071-7.

  70. Bassett DC, Olley RH. On the lamellar morphology of isotactic polypropylene spherulites. Polymer. 1984. https://doi.org/10.1016/0032-3861(84)90076-4.

  71. Olley RH, Bassett DC. On the development of polypropylene spherulites. Polymer. 1989. https://doi.org/10.1016/0032-3861(89)90004-9.

  72. Masada I, Okihara T, Murakami S, Ohara M, Kawaguchi A, Katayama K. A bimodal structure of solution-grown isotactic polypropylene with orthogonally crossed lamellae. J Polym Sci Polym Phys Ed. 1993. https://doi.org/10.1002/polb.1993.090310712.

  73. Jin Y, Bogunova M, Hilter A, Baer E, Nowacki R, Galeski A, et al. Structure of polypropylene crystallized in confined nanolayers. J Polym Sci B Polym Phys Ed. 2004. https://doi.org/10.1002/polb.20211.

  74. Ania F, Baltha-Calleja FJ, Flores A, Michler GH, Scholtyssek S, Khariwala D, et al. Nanostructure and crystallization phenomena in multilayered films of alternating iPP and PA6 semicrystalline polymers. Eur Polym J. 2012. https://doi.org/10.1016/j.eurpolymj.2011.10.003.

  75. Nozue Y, Shinohara Y, Ogawa Y, Sakurai T, Hori H, Kasahara T, et al. Deformation behavior of isotactic polypropylene spherulite during hot drawing investigated by simultaneous microbeam SAXS-WAXS and POM measurement. Macromolecules. 2007. https://doi.org/10.1038/s41428-018-0141-8.

  76. Shinohara Y, Yamazoe K, Sakurai T, Kimata S, Maruyama T, Amemiya Y. Effect of Structural Inhomogeneity on mechanical behavior of injection molded polypropylene investigated with microbeam X-ray scattering. Macromolecules. 2012. https://doi.org/10.1021/ma202178r.

  77. Matsui K, Bande A, Sakurai T, Shinohara Y, Maruyama T, Masunaga H, et al. Macroscopically homogeneous deformation in injection molded polypropylene induced by annealing studied with microbeam X-ray scattering. Polymer. 2015. https://doi.org/10.1016/j.polymer.2015.06.039.

  78. Nozue Y, Hirano S, Kurita R, Kawasaki N, Ueno S, Iida A, et al. Co-existing handednesses of lamella twisting in one spherulite observed with scanning microbeam wide-angle X-ray scattering. Polymer. 2004. https://doi.org/10.1016/j.polymer.2004.09.084.

  79. Tanaka T, Fujita M, Takeuchi A, Suzuki Y, Uesugi K, Doi Y, et al. Structure investigation of narrow banded spherulites in polyhydroxyalkanoates by microbeam X-ray diffraction with synchrotron radiation. Polymer. 2005. https://doi.org/10.1016/j.polymer.2005.03.064.

  80. Kajioka H, Yoshimoto S, Gosh RC, Taguchi K, Tanaka S, Toda A. Microbeam X-ray diffraction of non-banded polymer spherulites of it-polystyrene and it-poly(butene-1). Polymer. 2010. https://doi.org/10.1016/j.polymer.2010.02.025.

  81. Kikuzuki T, Shinohara Y, Nozue Y, Ito K, Amemiya Y. Determination of lamellar twisting manner in a banded spherulite with scanning microbeam X-ray scattering. Polymer. 2010. https://doi.org/10.1016/j.polymer.2010.01.057.

  82. Ueno S, Nishida T, Sato K. Synchrotron radiation microbeam X-ray analysis of microstructures and the polymorphic transformation of spherulite crystals of trilaurin. Cryst Growth Design. 2008. https://doi.org/10.1021/cg0706159.

  83. Ivanov DA, Rosenthal M. Microstructure of banded polymer spherulites: new insights from synchrotron nanofocus X-ray scattering. In: Finizia A, Giovanni CA, Claudio R, editors. Polymer crystallization II, advances in polymer science book series. Berlin: Springer; 2016. https://doi.org/10.1007/12_2016_352.

  84. Rosenthal M, Bar G, Burghammer M, Ivanov DA. On the nature of chirality imparted to achiral polymers by the crystallization process. Angew Chem. 2011. https://doi.org/10.1002/anie.201102814.

    Article  Google Scholar 

  85. Rosenthal M, Burghammer M, Portale G, Bar G, Samulski ET, Ivanov DA. Exploring the origin of crystalline lamella twist in semi-rigid chain polymers: the model of Keith and Padden revisited. Macromolecules. 2012. https://doi.org/10.1021/ma301446t.

  86. Rosenthal M, Burghammer M, Bar G, Samulski ET, Ivanov DA. Switching chirality of hybrid left-right helicoids built of achiral polymer chains: when right to left becomes left to right. Macromolecules. 2014. https://doi.org/10.1021/ma501733n.

  87. Rosenthal M, Hermandez JJ, Odarchenko YI, Soccio M, Lotti N, Di Cola E, et al. Non-radial growth of helical homopolymer crystals: breaking the paradigm of the polymer spherulite microstructure. Macromol Rapid Commun. 2013. https://doi.org/10.1002/marc.201300713.

  88. Yagi N, Ohta N, Iida T, Inoue K. A microbeam X-ray diffraction study of insulin spherulites. J Mol Biol. 2006. https://doi.org/10.1016/j.jmb.2006.07.041.

  89. Mahendrasingam A, Martin C, Fuller W, Blundell DJ, MacKerron D, Rule RJ, et al. Microfocus X-ray diffraction of spherulites of poly-3-hydroxybutyrate. J Synchrotron Rad. 1995. https://doi.org/10.1107/S0909049595009769.

  90. Kolb R, Wutzb C, Stribeckb N, von Krosigkb G, Riekel C. Investigation of secondary crystallization of polymers by means of microbeam X-ray scattering. Polymer. 2001;42:5257–66.

    Article  CAS  Google Scholar 

  91. Tashiro K, Yoshioka T, Yamamoto H, Wang H, Woo EM, Funaki K, et al. Relationship between twisting phenomenon and structural discontinuity of stacked lamellae in the spherulite of poly(ethylene adipate) as studied by the synchrotron X-ray microbeam technique. Polym J. 2019. https://doi.org/10.1016/S0032-3861(00)00920-4.

  92. Snigirev A, Kohn V, Snigireva I, Souvorov A, Lengeler B. Focusing high-energy X rays by compound refractive lenses. Appl Opt. 1998. https://doi.org/10.1364/ao.37.000653.

  93. Tashiro K. Structural science of crystalline polymers. Singapore: Springer Nature; 2022. https://doi.org/10.1007/978-981-15-9562-2.

  94. Lovinger AJ. Microstructure and unit-cell orientation in α-polypropylene. J Polym Sci Polym Phys Ed. 1983. https://doi.org/10.1002/pol.1983.180210107.

  95. Wang Z, Alfonso GC, Hu Z, Zhang J, He T. Rhythmic growth-induced ring-banded spherulites with radial periodic variation of thicknesses grown from poly(ε-caprolactone) solution with constant concentration. Macromolecules. 2008. https://doi.org/10.1021/ma8005697.

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed at the beamline 03XU of SPring-8, Harima, Japan, with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2020A7225).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohji Tashiro.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tashiro, K., Yamamoto, H., Funaki, Ki. et al. Three representative types of WAXD/SAXS patterns to establish the bimodal structure concept of stacked lamellae in isotactic polypropylene spherulites. Polym J 56, 491–503 (2024). https://doi.org/10.1038/s41428-024-00893-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-024-00893-x

Search

Quick links