Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Synthesis of thermosets from maleimidobenzoxazines and tetrafunctional thiols and their thermal and mechanical properties

Abstract

Thermal curing of maleimidobenzoxazines (MB-Rs) with n-butyl, 2-ethylhexyl, allyl, and phenyl substituents was carried out in the presence of tetrafunctional thiols with pentaerythritol and glycolurea cores (PEMP and TSG, respectively). The thermosets were prepared by the following curing processes: mixtures of MB-R and thiol compounds were directly cured at 140–160 °C and a building block, which was synthesized by a ring-opening reaction involving a benzoxazine moiety of MB-R and thiol compounds at room temperature, was postcured. To synthesize the building blocks, furan was used to protect the maleimide moiety of the MB-Rs to selectively promote the reaction between benzoxazine and mercapto groups. The effects of the network polymer structures on the thermal stability and mechanical properties of the produced thermosets were investigated by thermogravimetric analysis, dynamic mechanical analysis, and a mechanical tensile test.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J. Recent advances in all-solid-state rechargeable lithium batteries. Nano Ener. 2017;33:363–86.

    Article  CAS  Google Scholar 

  2. Simon P, Gogotsi Y. Perspectives for electrochemical capacitors and related devices. Nat Mater. 2020;19:1151–63.

    Article  CAS  PubMed  Google Scholar 

  3. Xing W, Xu Y, Song C, Deng T. Recent advances in thermal interface materials for thermal management of high-power electronics. Nanomater. 2022;12:3365.

    Article  CAS  Google Scholar 

  4. Wang X, Guo W, Song L, Hu Y. Intrinsically flame retardant bio-based epoxy thermosets: A review. Comp B Eng. 2019;179:107487.

    Article  CAS  Google Scholar 

  5. Quirino RL, Monroe K, Fleischer CH III, Biswas E, Kessler MR. Review on thermosetting polymers from renewable sources. Polym Int. 2021;70:167–80.

    Article  CAS  Google Scholar 

  6. Luo J, Demchuk Z, Zhao X, Saito T, Tian M, Sokolov AP, et al. Elastic vitrimers: Beyond thermoplastic and thermoset elastomers. Matter. 2022;5:1391–422.

    Article  CAS  Google Scholar 

  7. Nair CPR. Advances in addition-cure phenolic resins. Prog Polym Sci. 2004;29:401–98.

    Article  CAS  Google Scholar 

  8. Asim M, Saba N, Jawaid M, Nasir M, Pervaiz M, Alothman OY. A review on phenolic resin and its composites. Curr Anal Chem. 2018;14:185–97.

    Article  CAS  Google Scholar 

  9. Xu Y, Guo L, Zhang H, Zhai H, Ren H. Research status, industrial application demand and prospects of phenolic resin. RSC Adv. 2019;9:28924–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ishida H, Agag T. (Editors) Handbook of benzoxazine resins, Elsevier: Amsterdam, 2011.

  11. Takeichi T, Agag T. High performance polybenzoxazines as novel thermosets. High Perform Polym. 2006;18:777–97.

    Article  CAS  Google Scholar 

  12. Ghosh NN, Kiskan B, Yagci Y. Polybenzoxazines. New high performance thermosetting resins: Synthesis and properties. Prog Polym Sci. 2007;32:1344–91.

    Article  CAS  Google Scholar 

  13. Takeichi T, Kawauchi T, Agag T. High performance polybenzoxazines as a novel type of phenolic resin. Polym J. 2008;40:1121–31.

    Article  CAS  Google Scholar 

  14. Yagci Y, Kiskan B, Ghosh NN. Recent advancement on polybenzoxazine-A newly developed high performance thermoset. J Polym Sci Part A Polym Chem. 2009;47:5565–76.

    Article  CAS  Google Scholar 

  15. Lyu Y, Ishida H. Natural-sourced benzoxazine resins, homopolymers, blends and composites: A review of their synthesis, manufacturing and applications. Prog Polym Sci. 2019;99:101168.

    Article  CAS  Google Scholar 

  16. Machado I, Shaer C, Hurdle K, Calado V, Ishida H. Towards the development of green flame retardancy by polybenzoxazines. Prog Polym Sci. 2021;121:101435.

    Article  CAS  Google Scholar 

  17. Ning X, Ishida H. Phenolic materials via ring-opening polymerization: synthesis and characterization of bisphenol-A based benzoxazines and their polymers. J Polym Sci Part A Polym Chem. 1994;32:1121–9.

    Article  CAS  Google Scholar 

  18. Ishida H, Low HY. A study on the volumetric expansion of benzoxazine-based phenolic resin. Macromolecules. 1997;30:1099–106.

    Article  CAS  Google Scholar 

  19. Low HY, Ishida H. Structural effects of phenols on the thermal and thermo-oxidative degradation of polybenzoxazines. Polymer. 1999;40:4365–76.

    Article  CAS  Google Scholar 

  20. Kolanadiyil SN, Minami M, Endo T. Synthesis and thermal properties of difunctional benzoxazines with attached oxazine ring at the para-, meta-, and ortho-position. Macromolecules. 2017;50:3476–88.

    Article  CAS  Google Scholar 

  21. Kolanadiyil SN, Minami M, Endo T. Implementation of meta-positioning in tetrafunctional benzoxazines: Synthesis, properties, and differences in the polymerized structure. Macromolecules. 2020;53:6866–86.

    Article  Google Scholar 

  22. Murai Y, Uemura T, Chen Y, Kawauchi T, Takeichi T. Synthesis of high-molecular-weight benzoxazines from various combinations of bisphenols and diamines via Mannich condensation and properties of their thermosets. Polym J. 2021;53:439–47.

    Article  CAS  Google Scholar 

  23. Shaer C, Oppenheimer L, Lin A, Ishida H. Advanced carbon materials derived from polybenzoxazines: A review. Polymers (Basel). 2021;13:3775.

    Article  CAS  PubMed  Google Scholar 

  24. Kumar KSS, Nair CPR, Sadhana R, Ninan KN. Benzoxazine–bismaleimide blends: Curing and thermal properties. Eur Polym J. 2007;43:5084–96.

    Article  CAS  Google Scholar 

  25. Chou C-I, Liu Y-L. High performance thermosets from a curable Diels–Alder polymer possessing benzoxazine groups in the main chain. J Polym Sci Part A Polym Chem. 2008;46:6509–17.

    Article  CAS  Google Scholar 

  26. Lochab B, Varma IK, Bijwe J. Blends of benzoxazine monomers: Effect of structure and composition on polymer properties. J Therm Anal Calorim. 2013;111:1357–64.

    Article  CAS  Google Scholar 

  27. Wang Y, Kou K, Wu G, Zhuo L, Li J, Zhang Y. The curing reaction of benzoxazine with bismaleimide/cyanate ester resin and the properties of the terpolymer. Polymer. 2015;77:354–60.

    Article  CAS  Google Scholar 

  28. Wang H, Dayo AD, Wang J, Wang J-Y, Liu W-B. Trifunctional quinoxaline-based maleimide and its polymer alloys with benzoxazine: Synthesis, characterization, and properties. J Appl Polym Sci. 2021;138:49694.

    Article  CAS  Google Scholar 

  29. Lochab B, Monisha M, Amarnath N, Sharma P, Mukherjee S, Ishida H. Review on the accelerated and low-temperature polymerization of benzoxazine resins: addition polymerizable sustainable polymers. Polymers (Basel). 2021;13:1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Agag T, Takeichi T. Novel benzoxazine monomers containing p-phenyl propargyl ether: Polymerization of monomers and properties of polybenzoxazines. Macromolecules. 2001;34:7257–63.

    Article  CAS  Google Scholar 

  31. Agag T, Takeichi T. Synthesis and characterization of novel benzoxazine monomers containing p-allyl groups and their high performance thermosets. Macromolecules. 2003;36:6010–17.

    Article  CAS  Google Scholar 

  32. Takeichi T, Thongpradith S, Kawauchi T. Copolymers of vinyl-containing benzoxazine with vinyl monomers as precursors for high performance thermosets. Molecules. 2015;20:6488–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kobayashi T, Muraoka M, Goto M, Minami M, Sogawa H, Sanda F. Main-chain type benzoxazine polymers consisting of polypropylene glycol and phenyleneethynylene units: spacer effect on curing behavior and thermomechanical properties. Polym J. 2022;54:133–41.

    Article  CAS  Google Scholar 

  34. Muraoka M, Goto M, Minami M, Zhou D, Suzuki T, Yajima T, et al. Ethynylene-linked multifunctional benzoxazines: the effect of the ethynylene group and packing on thermal behavior. Polym Chem. 2022;13:5590–6.

    Article  CAS  Google Scholar 

  35. Kobayashi T, Goto M, Minami M, Sanda F. Synthesis and crosslinking reaction of a novel polymer containing benzoxazine and phenyleneethynylene moieties in the main chain. J Polym Sci Part A Polym Chem. 2019;57:2581–9.

    Article  CAS  Google Scholar 

  36. Lu Y, Yu X, Evans CJ, Yang S, Zhang K. Elucidating the role of acetylene in ortho-phthalimide functional benzoxazines: Design, synthesis, and structure-property investigations. Polym Chem. 2021;12:5059–68.

    Article  CAS  Google Scholar 

  37. Gorodisher I, DeVoe RJ, Webb RJ. Catalytic Opening of Lateral Benzoxazine Rings by Thiols. In ref. 10. Chapter 11, pp.211–234.

  38. Kawaguchi AW, Sudo A, Endo T. Synthesis of highly polymerizable 1,3-benzoxazine assisted by phenyl thio ether and hydroxyl moieties. J Polym Sci Part A Polym Chem. 2012;50:1457–61.

    Article  CAS  Google Scholar 

  39. Beyazkilic Z, Kahveci MU, Aydogan B, Kiskan B, Yagci Y. Synthesis of polybenzoxazine precursors using thiols: Simultaneous thiol-ene and ring-opening reactions. J Polym Sci Part A Polym Chem. 2012;50:4029–36.

    Article  CAS  Google Scholar 

  40. Kawaguchi AW, Sudo A, Endo T. Polymerization-depolymerization system based on reversible addition-dissociation reaction of 1,3-benzoxazine with thiol. ACS Macro Lett. 2013;2:1–4.

    Article  CAS  PubMed  Google Scholar 

  41. Semerci E, Kiskan B, Yagci Y. Thiol reactive polybenzoxazine precursors: A novel route to functional polymers by thiol-oxazine chemistry. Eur Polym J. 2015;69:636–41.

    Article  CAS  Google Scholar 

  42. Liu Y-L, Yu J-M, Chou C-I. Preparation and properties of novel benzoxazine and polybenzoxazine with maleimide groups. J Polym Sci Part A Polym Chem. 2004;42:5954–63.

    Article  CAS  Google Scholar 

  43. Ishida H, Ohba S. Synthesis and characterization of maleimide and norbornene functionalized benzoxazines. Polymer. 2005;46:5588–95.

    Article  CAS  Google Scholar 

  44. Chaisuwan T, Ishida T. High-performance maleimide and nitrile-functionalized benzoxazines with good processibility for advanced composites applications. J Appl Polym Sci. 2006;101:548–58.

    Article  CAS  Google Scholar 

  45. Ishida H, Ohba S. Thermal analysis and mechanical characterization of maleimide-functionalized benzoxazine/epoxy copolymers. J Appl Polym Sci. 2006;101:1670–7.

    Article  CAS  Google Scholar 

  46. Agag T, Takeichi T. Preparation, characterization, and polymerization of maleimidobenzoxazine monomers as a novel class of thermosetting resins. J Polym Sci Part A Polym Chem. 2006;44:1424–35.

    Article  CAS  Google Scholar 

  47. Liu Y-L, Yu J-M. Cocuring behaviors of benzoxazine and maleimide derivatives and the thermal properties of the cured products. J Polym Sci Part A Polym Chem. 2006;44:1890–9.

    Article  CAS  Google Scholar 

  48. Gacal B, Cianga L, Agag T, Takeichi T, Yagci Y. Synthesis and characterization of maleimide (co)polymers with pendant benzoxazine groups by photoinduced radical polymerization and their thermal curing. J Polym Sci Part A Polym Chem. 2007;45:2774–86.

    Article  CAS  Google Scholar 

  49. Agag T, Arza CR, Maurer FHJ, Ishida H. Primary amine-functional benzoxazine monomers and their use for amide-containing monomeric benzoxazines. Macromolecules. 2010;43:2748–58.

    Article  CAS  Google Scholar 

  50. Jin L, Agag T, Ishida H. Bis(benzoxazine-maleimide)s as a novel class of high performance resin: Synthesis and properties. Eur Polym J. 2010;46:354–63.

    Article  CAS  Google Scholar 

  51. Chaisuwan T, Ishida T. Highly processible maleimide and nitrile functionalized benzoxazines for advanced composites applications. J Appl Polym Sci. 2010;117:2559–65.

    Article  CAS  Google Scholar 

  52. Zhong H, Lu Y, Chen J, Xu W, Liu X. Preparation, characterization, and polymerization of novel maleimidobenzoxazine containing carboxylic moiety and its cocuring behaviors with epoxy resin. J Appl Polym Sci. 2010;118:705–10.

    Article  CAS  Google Scholar 

  53. Ke L, Hu D, Lu Y, Feng S, Xie Y, Xu W. Copolymerization of maleimide-based benzoxazine with styrene and the curing kinetics of the resultant copolymer. Polym Degrad Stabil. 2012;97:132–8.

    Article  CAS  Google Scholar 

  54. Gao Y, Huang F, Zhou Y, Du L. Synthesis and characterization of a novel acetylene- and maleimide-terminated benzoxazine and its high-performance thermosets. J Appl Polym Sci. 2013;128:340–6.

    Article  CAS  Google Scholar 

  55. Cheng Y, Qi T, Jin Y, Deng D, Xiao F. Highly cross-linked thermosetting resin of maleimidobenzoxazine functionalized with benzocyclobutene. Polymer. 2013;54:143–7.

    Article  CAS  Google Scholar 

  56. Lin S-C, Wu C-S, Yeh J-M, Liu Y-L. Reaction mechanism and synergistic anticorrosion property of reactive blends of maleimidecontaining benzoxazine and amine-capped aniline trimer. Polym Chem. 2014;5:4235–44.

    Article  CAS  Google Scholar 

  57. Zhang K, Liu Y, Ishida H. Polymerization of an AB-type benzoxazine monomer toward different polybenzoxazine networks: When Diels−Alder reaction meets benzoxazine chemistry in a single-component resin. Macromolecules. 2019;52:7386–95.

    Article  CAS  Google Scholar 

  58. Otsu T, Matsumoto A, Kubota T, Mori S. Reactivity in radical polymerization of N-substituted maleimides and thermal stability of the resulting polymers. Polym Bull. 1990;23:43–50.

    Article  CAS  Google Scholar 

  59. Otsu T, Matsumoto A, Kubota T. Radical polymerization of N-(alkyl-substituted phenyl)maleimides: Synthesis of thermally stable polymers soluble in nonpolar solvents. Macromolecules. 1990;23:4508–13.

    Article  Google Scholar 

  60. Omayu A, Matsumoto A. Synthesis and thermal properties of alternating copolymers of N-methylmaleimide with olefins including cyclic and polar groups. Macromol Chem Phys. 2008;209:2312–19.

    Article  CAS  Google Scholar 

  61. Takeda K, Matsumoto A. Thermosetting maleimide/isobutene alternating copolymer as a new class of transparent materials. Macromol Chem Phys. 2010;211:782–90.

    Article  CAS  Google Scholar 

  62. Hisano M, Takeda K, Takashima T, Jin Z, Shiibashi A, Matsumoto A. Sequence controlled radical copolymerization of N-substituted maleimides with olefins and polyisobutene macromonomers to fabricate thermally stable and transparent maleimide copolymers with tunable glass transition temperatures and viscoelastic properties. Macromolecules. 2013;46:7733–44.

    Article  CAS  Google Scholar 

  63. Hamerton I. High-performance thermoset-thermoset polymer blends: a review of the chemistry of cyanate ester-bismaleimide blends. High Perform Polym. 1996;8:83–95.

    Article  CAS  Google Scholar 

  64. Gouri C, Nair CPR, Ramaswamy R. Reactive Alder-ene blend of diallyl bisphenol A novolac and bisphenol A bismaleimide: synthesis, cure and adhesion studies. Polym Int. 2001;50:403–13.

    Article  CAS  Google Scholar 

  65. Anagwu FI, Thakur VK, Skordos AA. High-performance vitrimeric benzoxazines for sustainable advanced materials: Design, synthesis, and applications. Macromol Mater Eng. 2023;308:2200534.

    Article  CAS  Google Scholar 

  66. Kurasaki Y, Suzuki Y, Matsumoto A. Synthesis of heat-resistant and high-strength polymers by thiol-ene reaction of N-allylmaleimide copolymers using glycolurea cross-linkers with rigid molecular structures. J Polym Sci. 2020;58:923–31.

    Article  CAS  Google Scholar 

  67. Holly FW, Cope AC. Condensation products of aldehydes and ketones with o-aminobenzyl alcohol and o-hydroxybezylamine. J Am Chem Soc. 1944;66:1875–9.

    Article  CAS  Google Scholar 

  68. Takeichi T, Saito Y, Agag T, Muto H, Kawauchi T. High-performance polymer alloys of polybenzoxazine and bismaleimide. Polymer. 2008;49:1173–9.

    Article  CAS  Google Scholar 

  69. Andreu R, Reina JA, Ronda JC. Studies on the thermal polymerization of substituted benzoxazine monomers: Electronic effects. J Polym Sci Part A Polym Chem. 2008;46:3353–66.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akikazu Matsumoto.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takasu, M., Sugiura, K., Sugimoto, S. et al. Synthesis of thermosets from maleimidobenzoxazines and tetrafunctional thiols and their thermal and mechanical properties. Polym J 56, 17–30 (2024). https://doi.org/10.1038/s41428-023-00841-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00841-1

Search

Quick links