Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Thermal and mechanical behaviors of beads-on-string-shaped poly(azomethine)s based on their linker structures

Abstract

Poly(azomethine)s are generally thermally and environmentally stable polymers that are formed under moderate polymerization conditions and require no additional reagents, so they are high-purity polymeric materials. Hybrid polymers incorporating high concentrations of double-decker-shaped phenyl-substituted silsesquioxane (DDSQ) in the main chains lead to beads-on-string-shaped architectures, exhibiting excellent molding processabilities, optical transparencies, and good heat resistance. In this study, bis(3-aminopropyl)-DDSQ (2) was used in polymerizations with various aromatic dialdehydes to obtain poly(azomethine)s with high DDSQ contents. The polymerization behavior of 2 was also compared with that of 3,13-bisanilinyl-DDSQ (1) to determine whether the structures of the diamine monomers affect their polymerization reactions. Introducing the flexible propylene linkers into the DDSQ unit provided flexible and optically transparent free-standing films, while polymerization of 1 provided fragile films and no free-standing films were obtained. We found that their mechanical properties were highly dependent on the structures of the dianhydride comonomers. The storage modulus (E’) of poly(azomethine) (5c) made from biphenyldialdehyde with 2 was significantly lower than those of the others. Introducing the flexible chains in poly(azomethine) (5e), which was made from 1,8-bis(4-formylphenoxy)octane with 2 increased the E’ value. The lower E’ of 5c was due to inhibited entanglement of the interpolymer chains, while the longer flexible linker chains in 5e provided more packing structures.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Laine RM. Nanobuilding blocks base on the [OSiO1.5]x (x = 6, 8, 10) octasilsesquioxanews. J Mater Chem. 2005;15:3725–44.

    Article  CAS  Google Scholar 

  2. Chujo Y, Tanaka K. New polymeric materials based on element-blocks. Bull Chem Soc Jpn. 2015;88:633–43.

    Article  CAS  Google Scholar 

  3. Li G, Wang L, Ni H, Pittman CU Jr. Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers. J Inorg Org Polym. 2001;11:123–54.

    Article  CAS  Google Scholar 

  4. Yoshimatsu M, Komori K, Ohnagamitsu Y, Sueyoshi N, Kawashima N, Chinen S, et al. Necklace-shaped dimethylsiloxane polymers bearing a polyhedral oligomeric silsesquioxane cage prepared by polycondensation and ring-opening polymerization. Chem Lett. 2012;41:622–4.

    Article  CAS  Google Scholar 

  5. Maegawa T, Irie Y, Fueno H, Tanaka K, Naka K. Synthesis and polymerization of a para-disubstituted T8-caged hexaisobutyl-POSS monomer. Chem Lett. 2014;43:1532–4.

    Article  CAS  Google Scholar 

  6. Maegawa T, Irie Y, Imoto H, Fueno H, Tanaka K, Naka K. para-Bisvinylhexaisobutyl-substituted T8 caged monomer: Synthesis and hydrosilylation polymerization. Polym Chem. 2015;6:7500–4.

    Article  CAS  Google Scholar 

  7. Maegawa T, Miyashita O, Irie Y, Imoto H, Naka K. Synthesis and properties of polyimides containing hexaisobutyl-substituted T8 cages in their main chains. RSC Adv. 2016;6:31751–7.

    Article  CAS  Google Scholar 

  8. Feher FJ, Newman DA, Walzer JF. Silsesquioxanes as models for silica surfaces. J Am Chem Soc. 1989;111:1741–8.

    Article  CAS  Google Scholar 

  9. Lichtenhan JD, Vu NQ, Carter JA, Gilman JW, Feher FJ. Silsesquioxane-siloxane copolymers from polyhedral silsesquioxanes. Macromolecules. 1993;26:2141–2.

    Article  CAS  Google Scholar 

  10. Wright ME, Schorzman DA, Feher FJ, Jin R-Z. Synthesis and thermal curing of aryl-ethynyl-terminated coPOSS imide oligomers: New inorganic/organic hybrid resins. Chem Mater. 2003;15:264–8.

    Article  CAS  Google Scholar 

  11. Feher FJ, Terroba R, Ziller JW. A new route to incompletely-condensed silsesquioxanes: base-mediated cleavage of polyhedral oligosilsesquioxanes. Chem Commun. 1999;35:2309–10.

  12. Raftopoulos KN, Jancia M, Aravopoulou D, Hebda E, Pielichowski K, Pissis P. POSS along the hard segments of polyurethane. Phase separation and molecular dynamics. Macromolecules. 2013;46:7378–86.

    Article  CAS  Google Scholar 

  13. Asuncion MZ, Laine RM. Fluoride rearrangement reactions of polyphenyl- and polyvinylsilsesquioxanes as a facile route to mixed functional phenyl, vinyl T10 and T12 silsesquioxanes. J Am Chem Soc. 2010;132:3723–36.

    Article  CAS  PubMed  Google Scholar 

  14. Jung JH, Laine RM. Beads on a chain (BOC) polymers formed from the reaction of [NH2PhSiO1.5]x[PhSiO1.5]10–x and [NH2PhSiO1.5]x[PhSiO1.5]12–x mixtures (x = 2–4) with the diglycidyl ether of bisphenol A. Macromolecules. 2011;44:7263–72.

    Article  CAS  Google Scholar 

  15. Jung JH, Furgal JC, Clark S, Schwartz M, Chou K, Laine RM. Beads on a chain (BoC) polymers with model dendronized beads. Copolymerization of [(4-NH2C6H4SiO1.5)6(IPhSiO1.5)2] and [(4-CH3OC6H4SiO1.5)6(IPhSiO1.5)2] with 1,4-diethynylbenzene (DEB) gives through-chain, extended 3-D conjugation in the excited state that is an average of the corresponding homopolymers. Macromolecules. 2013;46:7580–90.

    Article  CAS  Google Scholar 

  16. Tokunaga T, Koga S, Mizumo T, Ohshita J, Kaneko Y. Facile preparation of a soluble polymer containing polyhedral oligomeric silsesquioxane units in its main chain. Polym Chem. 2015;6:3039–45.

    Article  CAS  Google Scholar 

  17. Hoque MA, Kakihana Y, Shinke S, Kawakami Y. Polysiloxanes with periodically distributed isomeric double-decker silsesquioxane in the main chain. Macromolecules. 2009;42:3309–15.

    Article  CAS  Google Scholar 

  18. Wu S, Hayakawa T, Kikuchi R, Grunzinger SJ, Kakimoto M, Oikawa H. Synthesis and characterization of semiaromatic polyimides containing POSS in main chain derived from double-decker-shaped silsesquioxane. Macromolecules. 2007;40:5698–705.

    Article  CAS  Google Scholar 

  19. Wei K, Wang L, Zheng S. Organic–inorganic polyurethanes with 3, 13-dihydroxypropyloctaphenyl double-decker silsesquioxane chain extender. Polym Chem. 2013;4:1491–501.

    Article  CAS  Google Scholar 

  20. Wu S, Hayakawa T, Kakimoto M, Oikawa H. Synthesis and characterization of organosoluble aromatic polyimides containing POSS in main chain derived from double-decker-shaped silsesquioxane. Macromolecules. 2008;41:3481–7.

    Article  CAS  Google Scholar 

  21. Liu N, Wei K, Wang L, Zheng S. Organic–inorganic polyimides with double decker silsesquioxane in the main chains. Polym Chem. 2016;7:1158–67.

    Article  CAS  Google Scholar 

  22. Ishida A, Fujii S, Sumida A, Kamitani T, Minami S, Urayama K, et al. Supramolecular organogel formation behaviors of beads-on-string shaped poly(azomethine)s dependent on POSS structures in the main chains. Polym Chem. 2021;12:3169–76.

    Article  CAS  Google Scholar 

  23. Kamitani T, Imoto H, Naka K. Soluble and processable thermoplastic hybrid polyimides containing POSS in main chains. Polym Chem. 2022;13:5145–51.

    Article  CAS  Google Scholar 

  24. Wojtkowaki PW. Aromatic-aliphatic azomethine ether polymers and fibers. Macromolecules. 1987;20:740–8.

    Article  Google Scholar 

  25. Morgan PW, Kwolek SL, Pletcher TC. Aromatic azomethine polymers and fibers. Macromolecules. 1987;20:729–39.

    Article  CAS  Google Scholar 

  26. Natansohn A, Yang H, Clark C. Polyimines from terephthalaldehyde and aliphatic diamines. Macromolecules. 1991;24:5489–96.

    Article  CAS  Google Scholar 

  27. Thomas O, Inganäs O, Andersson MR. Synthesis and properties of a soluble conjugated poly(azomethine) with high molecular weight. Macromolecules. 1998;31:2676–8.

    Article  CAS  Google Scholar 

  28. Zhao D, Moore JS. Folding-Driven Reversible Polymerization of oligo(m-phenylene ethynylene) imines: Solvent and starter sequence studies. Macromolecules. 2003;36:2712–20.

    Article  CAS  Google Scholar 

  29. Lei ZQ, Xie P, Rong MZ, Zhang MQ. Catalyst-free dynamic exchange of aromatic schiff base bonds and its application to self-healing and remolding of crosslinked polymers. J Mater Chem A. 2015;3:19662–8.

    Article  CAS  Google Scholar 

  30. Chow C-F, Fujii S, Lehn J-M. Crystallization-driven constitutional changes of dynamic polymers in response to neat/solution conditions. Chem Commun. 2007;43:4363–5.

    Article  Google Scholar 

  31. Janeliunas D, van Rijn P, Boekhoven J, Minkenberg CB, van Esch JH, Eelkema R. Aggregation-driven reversible formation of conjugated polymers in water. Angew Chem Int Ed. 2013;52:1998–2001.

    Article  CAS  Google Scholar 

  32. Tsai FC, Chang CC, Liu CL, Chen WC, Jenekhe SA. New thiophene-linked conjugated poly(azomethine)s:Theoretical electronic structure, synthesis, and properties. Macromolecules. 2005;38:1958–66.

    Article  CAS  Google Scholar 

  33. Sek D, Iwan A, Jarzabek B, Kaczmarczyk B, Kasperczyk J, Mazurak Z, et al. Hole transport triphenylamine−azomethine conjugated system: Synthesis and optical, photoluminescence, and electrochemical properties. Macromolecules. 2008;41:6653–63.

    Article  CAS  Google Scholar 

  34. Niu H, Kang H, Cai J, Wang C, Bai X, Wang W. Novel soluble polyazomethines with pendant carbazole and triphenylamine derivatives: preparation, characterization, and optical, electrochemical and electrochromic properties. Polym Chem. 2011;2:2804–17.

    Article  CAS  Google Scholar 

  35. Bolduc A, Barik S, Lenze MR, Meerholz K, Skene WG. Polythiophenozaomethines – alternate photoactive materials for organic photovoltaics. J Mater Chem A. 2014;2:15620–6.

    Article  CAS  Google Scholar 

  36. Park SB, Kim H, Zin WC, Jung JC. Synthesis and properties of polyazomethines having flexible (n-alkyloxy)methyl side chains. Macromolecules. 1993;26:1627–32.

    Article  CAS  Google Scholar 

  37. Fujii S, Minami S, Urayama K, Suenaga Y, Naito H, Miyashita O, et al. Beads-on-string-shaped poly(azomethine) applicable for solution processing of bilayer devices using a same solvent. ACS Macro Lett. 2018;7:641–5.

    Article  CAS  PubMed  Google Scholar 

  38. Ishii J, Kosugi M, Hasegawa M. Ultra-low modulus polyazomethines and enhanced adhesion strength with copper foils. Polym Adv Technol. 2016;27:477–85.

    Article  CAS  Google Scholar 

  39. Geng H, Wang Y, Yu Q, Gu S, Zhou Y, Xu W, et al. Vanillin-based polyschiff vitrimers: Reprocessability and chemical recyclability. ACS Sustainable Chem Eng. 2018;6:15463–70.

    Article  CAS  Google Scholar 

  40. Zhao D, Moor JS. Folding-driven reversible polymerization of oligo(m-phenylene ethylene) imines: Solvent and starter sequence studies. Macromolecules. 2003;36:2712–20.

    Article  CAS  Google Scholar 

  41. Menard KP. Dynamic Mechanical Analysis: A Practical Introduction. 1st ed. Boca Raton: CRC Press; 1999.

Download references

Acknowledgements

This work was supported by Grant-in-Aid for Scientific Research (No. 19H02764 and 21K19003) from the Ministry of Education, Culture, Sports, Science, and Technology, Government of Japan. We thank Dr Tsuneaki Sakurai of Kyoto Institute of Technology for XRD analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kensuke Naka.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirosawa, Y., Kamitani, T., Imoto, H. et al. Thermal and mechanical behaviors of beads-on-string-shaped poly(azomethine)s based on their linker structures. Polym J 55, 849–858 (2023). https://doi.org/10.1038/s41428-023-00778-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00778-5

Search

Quick links