Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Shape reprogramming of 3D printed ionogels by solvent exchange with deep eutectic solvents

Abstract

Extrusion-based 3D printing, such as direct ink writing (DIW), is an emerging technique used to fabricate soft materials for advanced applications. For example, ionogels with sufficient stretchabilities and long-term stabilities have been printed for use as wearable sensors to monitor human activities. However, DIW printing of geometrically complex structures is challenging without supporting materials. Additionally, most ionogels exhibit insufficient mechanical toughness. We present a simple strategy with which to prepare 3D printable and tough ionogels that can be adjusted to any topography. The ink for 3D printing is a dispersion of cellulose nanocrystals (CNCs) in an aqueous solution of polyvinyl alcohol (PVA). After printing, the ink underwent a freeze‒thaw process to form soft but stretchable hydrogels via crystallization of the PVA. Hydrogels with planar geometries were then reconfigured into the desired 3D shapes. Finally, the water in the hydrogels was replaced by a deep eutectic solvent (DES) composed of choline chloride (ChCl) and glycerol. The solvent exchange process induced PVA crystallization to form ionogels with higher mechanical toughnesses than common hydrogels. We then implemented this simple method to prepare wearable sensors that adapted to the irregular surfaces of human bodies. This work provides a shape-reprogramming strategy for expanding the design space of wearable sensors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang M, Hu J, Dickey MD. Tough ionogels: synthesis, toughening mechanisms, and mechanical properties─a perspective. JACS Au. 2022;2:2645–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yang C, Suo Z. Hydrogel ionotronics. Nat Rev Mater. 2018;3:125–42.

    Article  CAS  Google Scholar 

  3. Zhou Y, Wan C, Yang Y, Yang H, Wang S, Dai Z, et al. Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Adv Funct Mater. 2019;29:1806220.

    Article  Google Scholar 

  4. Lu Z, Sun L, Liu J, Wei H, Zhang P, Yu Y. Photoredox-mediated designing and regulating metal-coordinate hydrogels for programmable soft 3D-printed actuators. ACS Macro Lett. 2022;11:967–74.

    Article  CAS  PubMed  Google Scholar 

  5. Cheng Y, Chan KH, Wang X-Q, Ding T, Li T, Lu X, et al. Direct-ink-write 3D printing of hydrogels into biomimetic soft robots. ACS Nano. 2019;13:13176–84.

    Article  CAS  PubMed  Google Scholar 

  6. Lin S, Yuk H, Zhang T, Parada GA, Koo H, Yu C, et al. Stretchable hydrogel electronics and devices. Adv Mater. 2016;28:4497–505.

    Article  CAS  PubMed  Google Scholar 

  7. Xu L, Gao S, Guo Q, Wang C, Qiao Y, Qiu D. A solvent-exchange strategy to regulate noncovalent interactions for strong and antiswelling hydrogels. Adv Mater. 2020;32:2004579.

    Article  Google Scholar 

  8. Wang M, Zhang P, Shamsi M, Thelen JL, Qian W, Truong VK, et al. Tough and stretchable ionogels by in situ phase separation. Nat Mater. 2022;21:359–65.

    Article  CAS  PubMed  Google Scholar 

  9. Adelnia H, Ensandoost R, Shebbrin Moonshi S, Gavgani JN, Vasafi EI, Ta HT. Freeze/thawed polyvinyl alcohol hydrogels: present, past and future. Eur Polym J. 2022;164:110974.

    Article  CAS  Google Scholar 

  10. Ricciardi R, Auriemma F, De Rosa C, Lauprêtre F. X-ray diffraction analysis of poly(vinyl alcohol) hydrogels, obtained by freezing and thawing techniques. Macromolecules. 2004;37:1921–7.

    Article  CAS  Google Scholar 

  11. Otsuka E, Suzuki A. A simple method to obtain a swollen PVA gel crosslinked Hydrog bonds. Hydrog bonds J Appl Polym Sci. 2009;114:10–16.

    Article  CAS  Google Scholar 

  12. Wang Y, Wang J, Ma Z, Yan L. A highly conductive, self-recoverable, and strong eutectogel of a deep eutectic solvent with polymer crystalline domain regulation. ACS Appl Mater Interfaces. 2021;13:54409–16.

    Article  CAS  PubMed  Google Scholar 

  13. Gong Z, Zhang G, Zeng X, Li J, Li G, Huang W, et al. High-strength, tough, fatigue resistant, and self-healing hydrogel based on dual physically cross-linked network. ACS Appl Mater Interfaces. 2016;8:24030–7.

    Article  CAS  PubMed  Google Scholar 

  14. Wu S, Hua M, Alsaid Y, Du Y, Ma Y, Zhao Y, et al. Poly(vinyl alcohol) hydrogels with broad-range tunable mechanical properties via the Hofmeister effect. Adv Mater 2021;33:2007829.

    Article  CAS  Google Scholar 

  15. Hua M, Wu S, Ma Y, Zhao Y, Chen Z, Frenkel I, et al. Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature. 2021;590:594–9.

    Article  CAS  PubMed  Google Scholar 

  16. Chen W, Li N, Ma Y, Minus ML, Benson K, Lu X, et al. Superstrong and tough hydrogel through physical cross-linking and molecular alignment. Biomacromolecules. 2019;20:4476–84.

    Article  CAS  PubMed  Google Scholar 

  17. Liu T, Jiao C, Peng X, Chen Y-N, Chen Y, He C, et al. Super-strong and tough poly(vinyl alcohol)/poly(acrylic acid) hydrogels reinforced by hydrogen bonding. J Mater Chem B. 2018;6:8105–14.

    Article  CAS  PubMed  Google Scholar 

  18. Wang J, Zhang S, Ma Z, Yan L. Deep eutectic solvents eutectogels: progress and challenges. GreenChE. 2021;2:359–67.

    Google Scholar 

  19. Gurkan B, Squire H, Pentzer E. Metal-free deep eutectic solvents: Preparation, physical properties, and significance. J Phys Chem Lett. 2019;10:7956–64.

    Article  CAS  PubMed  Google Scholar 

  20. Kim YM, Moon HC. Ionoskins: Nonvolatile, highly transparent, ultrastretchable ionic sensory platforms for wearable electronics. Adv Funct Mater. 2020;30:1907290.

    Article  CAS  Google Scholar 

  21. Quintana AA, Sztapka AM, Santos Ebinuma VDC, Agatemor C. Enabling sustainable chemistry with ionic liquids and deep eutectic solvents: A fad or the future? Angew Chem Int Ed. 2022;61:e202205609.

    Article  CAS  Google Scholar 

  22. Zhang H, Tang N, Yu X, Li M-H, Hu J. Strong and tough physical eutectogels regulated by the spatiotemporal expression of non-covalent interactions. Adv Funct Mater. 2022;32:2206305.

    Article  CAS  Google Scholar 

  23. Wang Y, Liu Y, Plamthottam R, Tebyetekerwa M, Xu J, Zhu J, et al. Highly stretchable and reconfigurable ionogels with unprecedented thermoplasticity and ultrafast self-healability enabled by gradient-responsive networks. Macromolecules. 2021;54:3832–44.

    Article  CAS  Google Scholar 

  24. Zheng L, Hua H, Zhang Z, Zhu Y, Wang L, Li Y. PVA/ChCl deep eutectic polymer blends for transparent strain sensors with antifreeze, flexible, and recyclable properties. ACS Appl Mater Interfaces. 2022;14:49212–23.

    Article  CAS  PubMed  Google Scholar 

  25. Wang J, Zhan B, Zhang S, Wang Y, Yan L. Freeze-resistant, conductive, and robust eutectogels of metal salt-based deep eutectic solvents with poly(vinyl alcohol). ACS Appl Polym Mater. 2022;4:2057–64.

    Article  CAS  Google Scholar 

  26. Zhang Y, Shi G, Qin J, Lowe SE, Zhang S, Zhao H, et al. Recent progress of direct ink writing of electronic components for advanced wearable devices. ACS Appl Electron Mater. 2019;1:1718–34.

    Article  CAS  Google Scholar 

  27. Saadi MASR, Maguire A, Pottackal NT, Thakur MSH, Ikram MM, Hart AJ, et al. Direct ink writing: A 3D printing technology for diverse materials. Adv Mater. 2022;34:2108855.

    Article  CAS  Google Scholar 

  28. Truby RL, Lewis JA. Printing soft matter in three dimensions. Nature. 2016;540:371–8.

    Article  CAS  PubMed  Google Scholar 

  29. Peng E, Zhang D, Ding J. Ceramic robocasting: recent achievements, potential, and future developments. Adv Mater. 2018;30:1802404.

    Article  Google Scholar 

  30. Narupai B, Nelson A. 100th anniversary of macromolecular science viewpoint: macromolecular materials for additive manufacturing. ACS Macro Lett. 2020;9:627–38.

    Article  CAS  PubMed  Google Scholar 

  31. Lai C-W, Yu S-S. 3D printable strain sensors from deep eutectic solvents and cellulose nanocrystals. ACS Appl Mater Interfaces. 2020;12:34235–44.

    Article  CAS  PubMed  Google Scholar 

  32. Lai P-C, Yu S-S. Cationic cellulose nanocrystals-based nanocomposite hydrogels: achieving 3D printable capacitive sensors with high transparency and mechanical strength. Polymers. 2021;13:688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lai P-C, Ren Z-F, Yu S-S. Thermally induced gelation of cellulose nanocrystals in deep eutectic solvents for 3D printable and self-healable ionogels. ACS Appl Polym Mater. 2022;4:9221–30.

    Article  CAS  Google Scholar 

  34. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. 2011;40:3941–94.

    Article  CAS  PubMed  Google Scholar 

  35. Lagerwall JPF, SchĂĽtz C, Salajkova M, Noh J, Hyun Park J, Scalia G, et al. Cellulose nanocrystal-based materials: From liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater. 2014;6:e80.

    Article  CAS  Google Scholar 

  36. Lewis JA, Smay JE, Stuecker J, Cesarano J. Direct ink writing of three-dimensional ceramic structures. J Am Ceram Soc. 2006;89:3599–609.

    Article  CAS  Google Scholar 

  37. Zhang D, Peng E, Borayek R, Ding J. Controllable ceramic green-body configuration for complex ceramic architectures with fine features. Adv Funct Mater. 2019;29:1807082.

    Article  Google Scholar 

  38. Lu P, Hsieh Y-L. Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym. 2010;82:329–36.

    Article  Google Scholar 

  39. Siqueira G, Kokkinis D, Libanori R, Hausmann MK, Gladman AS, Neels A, et al. Cellulose nanocrystal inks for 3D printing of textured cellular architectures. Adv Funct Mater. 2017;27:1604619.

    Article  Google Scholar 

  40. Oguzlu H, Dobyrden I, Liu X, Bhaduri S, Claesson PM, Boluk Y. Polymer induced gelation of aqueous suspensions of cellulose nanocrystals. Langmuir. 2021;37:3015–24.

    Article  CAS  PubMed  Google Scholar 

  41. Peng B, Tang J, Wang P, Luo J, Xiao P, Lin Y, et al. Rheological properties of cellulose nanocrystal-polymeric systems. Cellulose. 2018;25:3229–40.

    Article  CAS  Google Scholar 

  42. Chen Y, Xu C, Huang J, Wu D, Lv Q. Rheological properties of nanocrystalline cellulose suspensions. Carbohydr Polym. 2017;157:303–10.

    Article  CAS  PubMed  Google Scholar 

  43. Snowden MJ, Clegg SM, Williams PA, Robb ID. Flocculation of silica particles by adsorbing and non-adsorbing polymers. J Chem Soc Faraday Trans. 1991;87:2201–7.

    Article  CAS  Google Scholar 

  44. Cohen N, Ochbaum G, Levi-Kalisman Y, Bitton R, Yerushalmi-Rozen R. Polymer-induced modification of cellulose nanocrystal assemblies in aqueous suspensions. ACS Appl Polym Mater. 2020;2:732–40.

    Article  CAS  Google Scholar 

  45. Chau M, Sriskandha SE, Pichugin D, Thérien-Aubin H, Nykypanchuk D, Chauve G, et al. Ion-mediated gelation of aqueous suspensions of cellulose nanocrystals. Biomacromolecules. 2015;16:2455–62.

    Article  CAS  PubMed  Google Scholar 

  46. Foster EJ, Moon RJ, Agarwal UP, Bortner MJ, Bras J, Camarero-Espinosa S, et al. Current characterization methods for cellulose nanomaterials. Chem Soc Rev. 2018;47:2609–79.

    Article  CAS  PubMed  Google Scholar 

  47. Peng M, Xiao G, Tang X, Zhou Y. Hydrogen-bonding assembly of rigid-rod poly(p-sulfophenylene terephthalamide) and flexible-chain poly(vinyl alcohol) for transparent, strong, and tough molecular composites. Macromolecules. 2014;47:8411–9.

    Article  CAS  Google Scholar 

  48. Abitbol T, Johnstone T, Quinn TM, Gray DG. Reinforcement with cellulose nanocrystals of poly(vinyl alcohol) hydrogels prepared by cyclic freezing and thawing. Soft Matter. 2011;7:2373.

    Article  CAS  Google Scholar 

  49. Lin S, Liu X, Liu J, Yuk H, Loh H-C, Parada GA, et al. Anti-fatigue-fracture hydrogels. Sci Adv. 2019;5:eaau8528.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Veerabagu U, Palza H, Quero F. Review: Auxetic polymer-based mechanical metamaterials for biomedical applications. ACS Biomater Sci Eng. 2022;8:2798–824.

    Article  CAS  PubMed  Google Scholar 

  51. Kapnisi M, Mansfield C, Marijon C, Guex AG, Perbellini F, Bardi I, et al. Auxetic cardiac patches with tunable mechanical and conductive properties toward treating myocardial infarction. Adv Funct Mater. 2018;28:1800618.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chansoria P, Etter EL, Nguyen J. Regenerating dynamic organs using biomimetic patches. Trends Biotechnol. 2022;40:338–53.

    Article  CAS  PubMed  Google Scholar 

  53. Kim HW, Kim TY, Park HK, You I, Kwak J, Kim JC, et al. Hygroscopic auxetic on-skin sensors for easy-to-handle repeated daily use. ACS Appl Mater Interfaces. 2018;10:40141–8.

    Article  CAS  PubMed  Google Scholar 

  54. Sun J-Y, Keplinger C, Whitesides GM, Suo Z. Ionic skin. Adv Mater. 2014;26:7608–14.

    Article  CAS  PubMed  Google Scholar 

  55. Lei Z, Wang Q, Wu P. A multifunctional skin-like sensor based on a 3D printed thermo-responsive hydrogel. Mater Horiz. 2017;4:694–700.

    Article  CAS  Google Scholar 

  56. Yin X-Y, Zhang Y, Cai X, Guo Q, Yang J, Wang ZL. 3D printing of ionic conductors for high-sensitivity wearable sensors. Mater Horiz. 2019;6:767–80.

    Article  CAS  Google Scholar 

  57. Yin X-Y, Zhang Y, Xiao J, Moorlag C, Yang J. Monolithic dual-material 3D printing of ionic skins with long-term performance stability. Adv Funct Mater. 2019;29:1904716.

    Article  Google Scholar 

  58. Adams JJ, Duoss EB, Malkowski TF, Motala MJ, Ahn BY, Nuzzo RG, et al. Conformal printing of electrically small antennas on three-dimensional surfaces. Adv Mater. 2011;23:1335–40.

    Article  CAS  PubMed  Google Scholar 

  59. Uzel SGM, Weeks RD, Eriksson M, Kokkinis D, Lewis JA. Multimaterial multinozzle adaptive 3D printing of soft materials. Adv Mater Technol. 2022;7:2101710.

    Article  Google Scholar 

  60. Allen RJA, Trask RS. An experimental demonstration of effective curved layer fused filament fabrication utilising a parallel deposition robot. Addit Manuf. 2015;8:78–87.

    Google Scholar 

Download references

Acknowledgements

We thank the National Science and Technology Council in Taiwan for financial support (109-2636-E-006-005, 110-2222-E-006-009-MY3, and 111-2314-B-006-046). We also appreciate the support of the Higher Education Sprout Project, Ministry of Education to the Headquarters of University Advancement at National Cheng Kung University (NCKU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Sheng Yu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, HY., Hsu, HJ. & Yu, SS. Shape reprogramming of 3D printed ionogels by solvent exchange with deep eutectic solvents. Polym J 55, 1211–1223 (2023). https://doi.org/10.1038/s41428-023-00814-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00814-4

Search

Quick links