Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lamellar crystallization of poly(trimethylene terephthalate)

Subjects

Abstract

The dependence of lamellar thickness on the melting temperature and crystallization temperature and the crystallization temperature dependence of the growth rate for poly(trimethylene terephthalate) (PTT) were examined with small-angle X-ray scattering (SAXS), wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and optical microscopy. The melting temperature of the isothermally crystallized PTT lamellar stack structure was determined by X-ray measurements. The equilibrium melting temperature of PTT was determined to be 290.5 °C from the relationship between the melting temperature and the lamellar thickness. The relationships of supercooling to the lamellar thickness and the growth rate were analyzed. The excess thickness δl = 7.1 Å was obtained from the data provided above for the crystallization temperature, Tc = 173.7 °C. The temperature dependence of the lamellar thickness below Tc = 173.7 °C suggested crystallization through a mesophase. The temperature dependence of the growth rate was explained by secondary nucleation theory over a wide crystallization temperature range.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rim PB, Runt JP. Melting behavior of crystalline/compatible polymer blends: poly (ε-caprolactone)/poly (styrene-co-acrylonitrile). Macromolecules. 1983;16:762–8.

    Article  CAS  Google Scholar 

  2. Bassett DC, Olley RH, Al Raheil IAM. On crystallization phenomena in PEEK. Polymer. 1988;29:1745–54.

    Article  CAS  Google Scholar 

  3. Lattimer MP, Hobbs JK, Hill MJ, Barham PJ. On the origin of the multiple endotherms in PEEK. Polymer. 1992;33:3971–3.

    Article  CAS  Google Scholar 

  4. Srimoaon P, Dangseeyun N, Supaphol P. Multiple melting behavior in isothermally crystallized poly(trimethylene terephthalate). Eur Polym J. 2004;40:599–608.

    Article  CAS  Google Scholar 

  5. Ivanov DA, Bar G, Dosiére M, Koch MHJ. A novel view on crystallization and melting of semirigid chain polymers: The case of poly(trimethylene terephthalate). Macromolecules. 2008;41:9224–33.

    Article  CAS  Google Scholar 

  6. Krüger KN, Zachmann HG. Investigation of the melting behavior of poly(aryl ether ketones) by simultaneous measurements of SAXS and WAXS employing synchrotron radiation. Macromolecules. 1993;26:5202–8.

    Article  Google Scholar 

  7. Verma R, Marand H, Hsiao B. Morphological changes during secondary crystallization and subsequent melting in poly(ether ether ketone) as studied by real time small angle X-ray scattering. Macromolecules. 1996;29:7767–75.

    Article  CAS  Google Scholar 

  8. Hsiao BS, Verma RK. A novel approach to extract morphological variables in crystalline polymers from time-resolved synchrotron SAXS data. J Synchrotron Radiat. 1998;5:23–9.

    Article  CAS  PubMed  Google Scholar 

  9. Heck B, Hugel T, Iijima M, Sadiku E, Strobl G. Steps in the transition of an entangled polymer melt to the partially crystalline state. N J Phys. 1999;1:1–17.

    Google Scholar 

  10. Melnikov AP, Rosenthal M, Rodygin AI, Doblas D, Anokhin DV, Burghammer M, et al. Re-exploring the double-melting behavior of semirigid-chain polymers with an in-situ combination of synchrotron nano-focus X-ray scattering and nanocalorimetry. Eur Polym J. 2016;81:598–606.

    Article  CAS  Google Scholar 

  11. Rosenthal M, Melnikov AP, Burghammer M, Ivanov DA. Reorganization of semicrystalline polymers on heating: Analyzing common misconceptions in the interpretation of calorimetric data. Response on the “Comment on “Re-exploring the double-melting behavior of semirigid-chain polymers with an in-situ combination of synchrotron nanofocus X-ray scattering and nanocalorimetry” by Dimitri A. Ivanov et al. [Euro. Polym. J. 81 (2016) 598–606.]”. Eur Polym J. 2017;94:517–23.

    Article  CAS  Google Scholar 

  12. Lauritzen JI Jr, Hoffman JD. Theory of formation of polymer crystals with folded chains in dilute solution. J Res Natl Bur Stand, A Phys Chem. 1960;64:73–102.

    Article  Google Scholar 

  13. Wunderlich B, Czornyj G. A study of equilibrium melting of polyethylene. Macromolecules. 1977;10:906–13.

    Article  CAS  Google Scholar 

  14. Rastogi S, Hikosaka M, Kawabata H, Keller A. Role of mobile phases in the crystallization of polyethylene. Part 1. Metastability lateral growth Macromol. 1991;24:6384–91.

    CAS  Google Scholar 

  15. Rastogi S, Ungar G. Hexagonal columnar phase in 1, 4-trans-polybutadiene: morphology, chain extension, and isothermal phase reversal. Macromolecules. 1992;25:1445–52.

    Article  CAS  Google Scholar 

  16. Keller A, Hikosaka M, Rastogi S, Toda A, Barham PJ, Goldbeck-Wood G. An approach to the formation and growth of new phases with application to polymer crystallization: effect of finite size, metastability, and Ostwald’s rule of stages. J Mater Sci. 1994;29:2579–604.

    Article  CAS  Google Scholar 

  17. Tashiro K, Sasaki S, Gose N, Kobayashi M. Microscopically-viewed structural change of polyethylene during isothermal crystallization from the melt I. time-resolved FT-IR spectral measurements. Polym J. 1998;30:485–91.

    Article  CAS  Google Scholar 

  18. Sirota EB, Herhold AB. Transient phase-induced nucleation. Science. 1999;283:529–32.

    Article  CAS  PubMed  Google Scholar 

  19. Strobl G. From the melt via mesomorphic and granular crystalline layers to lamellar crystallites: A major route followed in polymer crystallization? Eur Phys J E. 2000;3:165–83.

    Article  CAS  Google Scholar 

  20. Konishi T, Nishida K, Matsuba G, Kanaya T. Mesomorphic phase of poly(butylene-2, 6-naphthalate). Macromolecules. 2008;41:3157–61.

    Article  CAS  Google Scholar 

  21. Konishi T, Miyamoto Y. Crystallization of poly(butylene terephthalate) from the glass. Macromolecules. 2010;43:375–83.

    Article  CAS  Google Scholar 

  22. Konishi T, Sakatsuji W, Fukao K, Miyamoto Y. Polymer crystallization mechanism through a mesomorphic state. Phys Rev B. 2011;84:132102.

    Article  Google Scholar 

  23. Cavallo D, Mileva D, Portale G, Zhang L, Balzano L, Alfonso GC, et al. Mesophase-mediated crystallization of poly(butylene-2, 6-naphthalate): an example of Ostwald’s rule of stages. ACS Macro Lett. 2012;1:1051–5.

    Article  CAS  PubMed  Google Scholar 

  24. Ding Q, Soccio M, Lotti N, Cavallo D, Androsch R. Melt Crystallization of Poly (butylene 2, 6-naphthalate). Chin J Polym Sci. 2020;38:311–22.

    Article  CAS  Google Scholar 

  25. Konishi T, Sakatsuji W, Fukao K, Miyamoto Y. Temperature dependence of lamellar thickness in isothermally crystallized poly(butylene terephthalate). Macromolecules. 2016;49:2272–80.

    Article  CAS  Google Scholar 

  26. Konishi T, Sakatsuji W, Miyamoto Y. crystallization through mesophase in poly(butylene terephthalate): approach from dependence of growth rate on lamellar thickness. Polymer. 2017;119:160–6.

    Article  CAS  Google Scholar 

  27. Yamamoto T. Molecular Dynamics in fiber formation of polyethylene and large deformation of the fiber. Polymer. 2013;54:3086–97.

    Article  CAS  Google Scholar 

  28. Huang JM, Chang FC. Crystallization kinetics of poly(trimethylene terephthalate). J Polym Sci B Polym Phys. 2000;38:934–41.

    Article  CAS  Google Scholar 

  29. Wang B, Li CY, Hanzlicek J, Cheng SZD, Geil PH, Grebowicz J, et al. Poly(trimethylene teraphthalate) Crystal structure and morphology in different length scales. Polymer. 2001;42:7171–80.

    Article  CAS  Google Scholar 

  30. Hong PD, Chung WT, Hsu CF. Crystallization kinetics and morphology of poly(trimethylene terephthalate). Polymer. 2002;43:3335–43.

    Article  CAS  Google Scholar 

  31. Konishi T, Okamoto D, Tadokoro D, Kawahara Y, Fukao K, Miyamoto Y. Origin of SAXS Intensity in the low-q region during the early stage of polymer crystallization from both the melt and glassy state. Phys Rev Mater. 2018;2:105602.

    Article  CAS  Google Scholar 

  32. Chuang WT, Su WB, Jeng US, Hong PD, Su CJ, Su CH, et al. Formation of mesomorphic domains and subsequent structural evolution during cold crystallization of poly(trimethylene terephthalate). Macromolecules. 2011;44:1140–8.

    Article  CAS  Google Scholar 

  33. Soccio M, Nogales A, Ezquerra TA, Lotti N, Munari A. Effect of copolymerization in the dynamics of poly(trimethylene terephthalate). Macromolecules. 2012;45:180–8.

    Article  CAS  Google Scholar 

  34. Konishi T, Okamoto D, Tadokoro D, Kawahara Y, Fukao K, Miyamoto Y. Kinetics of polymer crystallization with aggregating small crystallites. Phys Rev Lett. 2022;128:107801.

    Article  CAS  PubMed  Google Scholar 

  35. Yang J, Sidoti G, Liu J, Geil PH, Li CY, Cheng SZD. Morphology and crystal structure of CTFMP and bulk polymerized poly(trimethylene terephthalate). Polymer. 2001;42:7181–95.

    Article  CAS  Google Scholar 

  36. Ho RM, Ke KZ, Chen M. Crystal structure and banded spherulite of poly(trimethylene terephthalate). Macromolecules. 2000;33:7529–37.

    Article  CAS  Google Scholar 

  37. Marand H, Xu J, Srinivas S. Determination of the equilibrium melting temperature of polymer crystals: linear and nonlinear hoffman-weeks extrapolations. Macromolecules. 1988;31:8219–29.

    Article  Google Scholar 

  38. Miyamoto Y, Fukao K, Miyaji H. Small-angle x-ray scattering of isotactic polystyrene. Colloid Polym Sci. 1995;273:66–75.

    Article  CAS  Google Scholar 

  39. Pyda M, Boller A, Grebowicz J, Chuah H, Lebedev BV, Wunderlich B. Heat capacity of poly(trimethylene terephthalate). J Polym Sci B Polym Phys. 1998;36:2499–511.

    Article  CAS  Google Scholar 

  40. Poulin-Dandurand S, Pérez S, Revol JF, Brisse F. The crystal structure of poly(trimethylene terephthalate) by x-ray and electron diffraction. Polymer. 1979;20:419–26.

    Article  CAS  Google Scholar 

  41. Jones DH, Latham AJ, Keller A, Girolamo M. Fold Length of Single Crystals of Polystyrene: A conflict with crystallization theories at high supercoolings. J Polym Sci Polym Phys. 1973;11:1759–67.

    Article  CAS  Google Scholar 

  42. Rault J. Process of crystallization of polymers at low supercooling. J Phys Lett. 1978;39:411–3.

    Article  CAS  Google Scholar 

  43. Rault J. Crystallization of polymers. J Macromol Sci Phys. 1978;15:567–93.

    Article  Google Scholar 

  44. Tanzawa Y, Miyaji H, Miyamoto Y, Kiho H. Polymer crystallization at high supercoolings: 2. Molecular-weight dependence of lamellar thickness in isotactic polystyrene. Polymer. 1988;29:904–8.

    Article  CAS  Google Scholar 

  45. Takayanagi M, Yamashita T. Growth rate and structure of spherulite in fractionated poly(ethylene adipate). J Polym Sci. 1956;22:552–5.

    Article  CAS  Google Scholar 

  46. Strobl GR. The physics of polymers. 3rd ed. Berlin, Heidelberg: Springer; 2007.

  47. Wu J, Schultz JM, Samon JM, Pangelinan AB, Chuah HH. In situ study of structure development in poly(trimethylene terephthalate) fibers during stretching by simultaneous synchrotron small- and wide-angle x-ray scattering. Polymer. 2001;42:7141–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by JSPS KAKENHI Grant No. JP 22K03548 (TK). The X-ray measurements were performed at BL-40B2 and BL-40XU of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal Nos. 2014B1509, 2015B1192, 2017A1679, 2017B1119, 2017B1719, 2019B1794, 2020A1113, 2020A1078, and 2021A1413). The authors wish to acknowledge Dr Hideki Miyaji and Dr Teppei Yoshida of Kyoto University and Dr Ken Taguchi of Hiroshima Univ. for discussing the experimental results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Tadokoro.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tadokoro, D., Konishi, T., Fukao, K. et al. Lamellar crystallization of poly(trimethylene terephthalate). Polym J 55, 775–783 (2023). https://doi.org/10.1038/s41428-023-00777-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00777-6

This article is cited by

Search

Quick links