Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Retardation of the growth rate of the basal and overgrown lamellar crystals of PCL/PVME miscible binary blends with thickness confinement

Abstract

For bulk crystallization, the growth rate is governed by the nucleation process and depends mainly on the crystallization temperature and composition of the blends. If the crystallization process is confined in ultrathin films, then the diffusion-controlled growth process is remarkably retarded due to the thickness confinement. This study reports the retardation of the growth rate of the basal and overgrown lamellar crystals of neat Poly(ε-caprolactone) (PCL) and poly(vinyl methyl ether) (PVME) crystalline/amorphous miscible binary blends with various thicknesses. The morphological variations and the corresponding crystal growth rate were analyzed using real-time microscopy, and the crystal structures were evaluated by transmission electron microscopy. The growth rate was strongly dependent on the crystallization temperature, film thickness, and composition ratios in the blend. Moreover, the longitudinal and lateral growth rates of basal and overgrown lamellar crystals were discussed. This study revealed that the film thickness significantly retards the growth rate of basal and overgrown lamellar crystals and reduces the number of overgrowths on the basal lamellar crystals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Xu J, Reiter G, Alamo RG. Concepts of nucleation in polymer crystallization. Crystals. 2021;11:304.

    Article  CAS  Google Scholar 

  2. Mamun A, Umemoto S, Okui N, Ishihara N. Self-seeding effect on primary nucleation of isotactic polystyrene. Macromolecules. 2007;40:6296–303.

    Article  CAS  Google Scholar 

  3. Michell RM, Müller AJ. Confined crystallization of polymeric materials. Prog Polym Sci. 2016;55:183–213.

    Article  CAS  Google Scholar 

  4. Reiter G, Sommer J-U. Crystallization of adsorbed polymer monolayers. Phys Rev Lett. 1998;80:3771–4.

    Article  CAS  Google Scholar 

  5. Ferreiro V, Douglas JF, Warren JA, Karim A. Nonequilibrium pattern formation in the crystallization of polymer blend films. Phys Rev E. 2002;65:042802.

    Article  CAS  Google Scholar 

  6. Mareau VH, Prud’homme RE. In-situ hot stage atomic force microscopy study of poly(e-caprolactone) crystal growth in ultrathin films. Macromolecules. 2005;38:398–408.

    Article  CAS  Google Scholar 

  7. Nettesheim S, Zeisel D, Handschuh M, Zenobi R. Self-assembly and desorption behavior of poly(ethylene glycol) monolayers on silica. Langmuir. 1998;14:3101–6.

    Article  CAS  Google Scholar 

  8. Wang M, Braun H-G, Meyer E. Branched crystalline patterns formed around poly(ethylene oxide) dots in humidity. Macromol Rapid Commun. 2002;23:853–8.

    Article  CAS  Google Scholar 

  9. Wang K, Cai L, Jesse S, Wang S. Poly(ε-caprolactone)-banded spherulites and interaction with MC3T3-E1 cells. Langmuir. 2012;28:4382–95.

    Article  CAS  PubMed  Google Scholar 

  10. Pearce R, Vancso GJ. Imaging of melting and crystallization of poly(ethylene oxide) in real-time by hot-stage atomic force microscopy. Macromolecules. 1997;30:5843–8.

    Article  CAS  Google Scholar 

  11. Basire C, Ivanov DA. Evolution of the lamellar structure during crystallization of a semicrystalline-amorphous polymer blend: time-resolved hot-stage SPM study. Phys Rev Lett. 2000;85:5587–90.

    Article  CAS  PubMed  Google Scholar 

  12. Ni’mah H, Woo EM. Dendritic morphology composed of stacked single crystals in poly(ethylene succinate) melt-crystallized with poly(p-vinyl phenol). Cryst Growth Des. 2014;14:576–84.

    Article  CAS  Google Scholar 

  13. Hahm S, Kim D, Khang D. One-dimensional confinement in crystallization of P(VDF-TrFE) thin films with transfer-printed metal electrode. Polymer. 2014;55:175–81.

    Article  CAS  Google Scholar 

  14. Kovacs AJ, Straupe C. Isothermal growth, thickening and melting of poly(ethylene oxide) single crystals in the bulk. Part 4.—Dependence of pathological crystal habits on temperature and thermal history. Faraday Discuss Chem Soc. 1979;68:225–38.

    Article  Google Scholar 

  15. Lovinger AJ, Keith HD. Electron diffraction investigation of a high-temperature form of poly(vinylidene fluoride). Macromolecules. 1979;12:919–24.

    Article  CAS  Google Scholar 

  16. Martínez-Tong DE, Vanroy B, Wübbenhorst M, Nogales A, Napolitano S. Crystallization of poly(l-lactide) confined in ultrathin films: competition between finite size effects and irreversible chain adsorption. Macromolecules. 2014;47:2354–60.

    Article  CAS  Google Scholar 

  17. Sommer J-U, Reiter G. Polymer crystallization in quasi-two dimensions. II. Kinetic models and computer simulations. J Chem Phys. 2000;112:4384–93.

    Article  CAS  Google Scholar 

  18. Malwela T, Ray SS. Study of morphology and crystal growth behaviour of nanoclay-containing biodegradable polymer blend thin films using atomic force microscopy. Polymer. 2012;53:2705–16.

    Article  CAS  Google Scholar 

  19. Qiao C, Zhao J, Jiang S, Ji X, An L, Jiang B. Crystalline morphology evolution in PCL thin films. J Polym Sci Part B: Polym Phys. 2005;43:1303–9.

    Article  CAS  Google Scholar 

  20. Reiter G, Sommer J-U. Polymer crystallization in quasi-two dimensions. I. Experimental results. J Chem Phys. 2000;112:4376–83.

    Article  CAS  Google Scholar 

  21. Samanta P, T V, Singh S, Srivastava R, Nandan B, Liu C-L, et al. Crystallization behaviour of poly(ethylene oxide) under confinement in the electrospun nanofibers of polystyrene/poly(ethylene oxide) blends. Soft Matter. 2016;12:5110–20.

    Article  CAS  PubMed  Google Scholar 

  22. Nojima S, Fukagawa Y, Ikeda H. Interactive crystallization of a strongly segregated double crystalline block copolymer with close crystallizable temperatures. Macromolecules. 2009;42:9515–22.

    Article  CAS  Google Scholar 

  23. Harada K, Sugimoto T, Kato F, Watanabe K, Matsumoto Y. Thickness dependent homogeneous crystallization of ultrathin amorphous solid water films. Phys Chem Chem Phys. 2020;22:1963–73.

    Article  CAS  PubMed  Google Scholar 

  24. Mamun A, Bazuin CG, Prud’homme RE. Morphologies of various polycaprolactone/polymer blends in ultrathin films. Macromolecules. 2015;48:1412–7.

    Article  CAS  Google Scholar 

  25. Fujie T, Kawamoto Y, Haniuda H, Saito A, Kabata K, Honda Y, et al. Selective molecular permeability induced by glass transition dynamics of semicrystalline polymer ultrathin films. Macromolecules. 2013;46:395–402.

    Article  CAS  Google Scholar 

  26. Yang J-P, Liao Q, Zhou J-J, Jiang X, Wang X-H, Zhang Y, et al. What determines the lamellar orientation on substrates? Macromolecules. 2011;44:3511–6.

    Article  CAS  Google Scholar 

  27. Mamun A, Mareau VH, Chen J, Prud’homme RE. Morphologies of miscible PCL/PVC blends confined in ultrathin films. Polymer. 2014;55:2179–87.

    Article  CAS  Google Scholar 

  28. Toda A, Keller A. Growth of polyethylene single crystals from the melt: morphology. Colloid Polym Sci. 1993;271:328–42.

    Article  CAS  Google Scholar 

  29. Keller A. Investigations on banded spherulites. J Polym Sci. 1959;39:151–73.

    Article  CAS  Google Scholar 

  30. Keith HD, Padden FJ. The optical behavior of spherulites in crystalline polymers. Part I. Calculation of theoretical extinction patterns in spherulites with twisting crystalline orientation. J Polym Sci. 1959;39:101–22.

    Article  CAS  Google Scholar 

  31. Keith HD, Padden FJ. Twisting orientation and the role of transient states in polymer crystallization. Polymer. 1984;25:28–42.

    Article  CAS  Google Scholar 

  32. Keith HD, Padden FJ, Russell TP. Morphological changes in polyesters and polyamides induced by blending with small concentrations of polymer diluents. Macromolecules. 1989;22:666–75.

    Article  CAS  Google Scholar 

  33. Nunez E, Vansco GJ, Gedde UW. Morphology, crystallization and melting of single crystals and thin films of star–branched polyesters with poly(epsilon-caprolactone) arms as revealed by atomic force microscopy. J Macromol Sci Part B Physics. 2008;47:589–607.

    Article  CAS  Google Scholar 

  34. Zhou X, Thompson GE. Electron and photon based spatially resolved techniques, Reference module in materials science and materials engineering. Manchester, UK: Elsevier; 2017.

  35. Taguchi K, Miyaji H, Izumi K, Hoshino A, Miyamoto Y, Kokawa R. Growth shape of isotactic polystyrene crystals in thin films. Polymer. 2001;42:7443–7.

    Article  CAS  Google Scholar 

  36. Mamun A. Effect of acrylonitrile content of SAN on the bending morphology and its quantitative variation inside crystals of PCL/SAN blends confined in thin films. J Polym Sci. 2020;58:3283–93.

    Article  CAS  Google Scholar 

  37. Mamun A. Advance application of Raman spectroscopy for quantitative analysis of noncrystalline components in thin films of poly(ε-caprolactone)/poly(butadiene) blends. Polym Eng Sci. 2020;60:2702–9.

    Article  CAS  Google Scholar 

  38. Mamun A, Mahmood R. Comonomer effect on the thermal, morphological and mechanical properties of poly(ethylene-co-octene)/poly(ethylene-co-vinyl acetate) blends. Polym Sci, Ser A. 2020;62:660–9.

    Article  Google Scholar 

  39. Kressler J, Svoboda P, Inoue T. Influence of copolymer composition on the crystallization in PCL/SAN blends. Polymer. 1993;34:3225–33.

    Article  CAS  Google Scholar 

  40. Fox TG, Loshaek S. Influence of molecular weight and degree of crosslinking on the specific volume and glass temperature of polymers. J Polym Sci. 1955;15:371–90.

    Article  CAS  Google Scholar 

  41. Koleske JV, Lundberg RD. Lactone polymers. I. Glass transition temperature of poly-ε-caprolactone by means on compatible polymer mixtures. J Polym Sci Part A-2: Polym Phys. 1969;7:795–807.

    Article  CAS  Google Scholar 

  42. Hoffman JD, Miller RL. Kinetic of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment. Polymer. 1997;38:3151–212.

    Article  CAS  Google Scholar 

  43. Hoffman JD, Davis GT, Lauritzen JI Jr. Treaties on solid state chemistry. New York: Plenum Press; 1976.

  44. Schönherr H, Frank CW. Ultrathin films of poly(ethylene oxides) on oxidized silicon. 1. Spectroscopic characterization of film structure and crystallization kinetics. Macromolecules. 2003;36:1188–98.

    Article  CAS  Google Scholar 

  45. Zuo B, Qian C, Yan D, Liu Y, Liu W, Fan H, et al. Probing glass transitions in thin and ultrathin polystyrene films by stick–slip behavior during dynamic wetting of liquid droplets on their surfaces. Macromolecules. 2013;46:1875–82.

    Article  CAS  Google Scholar 

  46. Wang Y, Chan C-M, Jiang Y, Li L, Ng K-M. AFM studies of the molecular weight dependence of lamellar growth kinetics of polymers near the glass transition temperature. Macromolecules. 2007;40:4002–8.

    Article  CAS  Google Scholar 

  47. Zhang F, Baralia GG, Nysten B, Jonas AM. Melting and van der Waals stabilization of PE single crystals grown from ultrathin films. Macromolecules. 2011;44:7752–7.

    Article  CAS  Google Scholar 

  48. Bartczak Z, Argon AS, Cohen RE, Kowalewski T. The morphology and orientation of polyethylene in films of sub-micron thickness crystallized in contact with calcite and rubber substrates. Polymer. 1999;40:2367–80.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful to the Deanship of Scientific Research at the University of Hafr Al Batin, Saudi Arabia, for providing the experimental facilities. The author thanks Professor Robert Prudhomme, Department of Chemistry, UdeM, for his assistant during manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Al Mamun.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamun, A. Retardation of the growth rate of the basal and overgrown lamellar crystals of PCL/PVME miscible binary blends with thickness confinement. Polym J 54, 653–665 (2022). https://doi.org/10.1038/s41428-021-00610-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00610-y

Search

Quick links