Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Novel synthesis of porous one-handed helical poly(substituted phenylacetylene) bearing betulin derivatives pendant groups

Abstract

A novel substituted phenylacetylene with a pendant betulin derivative group was designed and synthesized successfully, and the chemical structure of the monomer was confirmed by nuclear magnetic resonance spectroscopy (NMR, 1H, 13C), high-resolution mass spectrometry (HRMS) and Fourier transform infrared spectroscopy (FTIR). The obtained monomer was further polymerized in an achiral [Rh(nbd)Cl]2/triethylamine (TEA) catalytic system, and the resulting polymer exhibited a strong Cotton effect at the main-chain absorption regions in the circular dichroism (CD) spectra. This one-handed helical backbone was induced by the chiral source on the side chain and maintained by the rigid betulin derivative pendant flats. Furthermore, the rigid betulin derivatives also contributed to the porous morphology and perfect thermal stability of the polymer. This study will provide a new method for preparing porous chiral polymers as efficient separation materials to solve practical issues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gowers DM, Halford SE. Protein motion from non-specific to specific DNA by three-dimensional routes aided by supercoiling. EMBO J. 2003;22:1410–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. van den Broek B, Lomholt MA, Kalisch SM, Metzler R, Wuite GJ. How DNA coiling enhances target localization by proteins. Proc Natl Acad Sci USA 2008;105:15738–42.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhang D, Yang Z, Wen X, Xiang Z, He L, Ran S, et al. Helical conformations of semiflexible polymers confined between two concentric cylinders. J Phys Chem B. 2011;115:14333–40.

    Article  CAS  PubMed  Google Scholar 

  4. Aoki T, Kaneko T, Maruyama N, Sumi A, Takahashi M, Sato T, et al. Helix-sense-selective polymerization of phenylacetylene having two hydroxy groups using a chiral catalytic system. J Am Chem Soc. 2003;125:6346–7.

    Article  CAS  PubMed  Google Scholar 

  5. Liu L, Zang Y, Jia H, Aoki T, Kaneko T, Hadano S, et al. Helix-sense-selective polymerization of achiral phenylacetylenes and unique properties of the resulting cis-cisoidal polymers. Polym Rev. 2017;57:89–118.

    Article  CAS  Google Scholar 

  6. Shi J, Kimura Y, Takeda S, Xu C, Shoji K, Teraguchi M, et al. Improvement of oxygen permselectivity of a rigid helical polyphenylacetylene: effect of flexible groups, degree of polymerization, composites, thickness, orientation, and network formation. Polymer. 2021;228:123900.

    Article  CAS  Google Scholar 

  7. Yashima E, Maeda K, Iida H, Furusho Y, Nagai K. Helical polymers: synthesis, structures, and functions. Chem Rev. 2009;109:6102–211.

    Article  CAS  PubMed  Google Scholar 

  8. Zou H, Wu QL, Zhou L, Hou XH, Liu N, Wu ZQ. Chiral recognition and resolution based on helical polymers. Chinese J Polym Sci. 2021;39:1521–7.

    Article  CAS  Google Scholar 

  9. Zang Y, Qu Y, Aoki T, Teraguchi M, Kaneko T, Jia H, et al. Simultaneous improvement of permeability and selectivity in enantioselective permeation through solid chiral membranes from a newly synthesized one-handed helical polyphenylacetylene with aldehyde pendant groups by enantioselective reaction. Polymer. 2019;171:45–49.

    Article  CAS  Google Scholar 

  10. Zhao B, Pan K, Deng J, Deng J. Intense circularly polarized luminescence contributed by helical chirality of monosubstituted polyacetylenes. Macromolecules. 2018;51:7104–11.

    Article  CAS  Google Scholar 

  11. Yin G, Liu L, Mottate K, Teraguchi M, Kaneko T, Aoki T. On-off reversible switching of the chirality of one-handed helical Poly(phenylacetylene)s by polarity stimuli. Polymer. 2021;237:124347.

    Article  CAS  Google Scholar 

  12. Shi Z, Teraguchi M, Aoki T, Kaneko T. Helical conformation stability of Poly 3,5-bis(hydroxymethyl)phenylacetylene s depending on the length of their rigid and linear pi-conjugated side groups. Chem Lett. 2015;44:1413–5.

    Article  CAS  Google Scholar 

  13. Shi Z, Kwak G, Jin YJ, Teraguchi M, Aoki T, Kaneko T. Solvent-tuned dual emission of a helical poly[3,5-bis(hydroxymethyl)phenylacetylene] connected with a π-conjugated chromophore. Polym J. 2018;50:533–7.

    Article  CAS  Google Scholar 

  14. Shi Z, Wang J, Teraguchi M, Aoki T, Kaneko T. Helix-sense-selective polymerization of 3,5-bis(hydroxymethyl)phenylacetylene rigidly bearing galvinoxyl residues and their chiroptical properties. Polymers. 2019;11:1877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang J, Shi Z, Zang Y, Jia H, Teraguchi M, Kaneko T, et al. Macromolecular design for oxygen/nitrogen permselective membranes-top-performing polymers in 2020. Polymers. 2021;13:3012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. O’Connell MM, Bentley MD, Campbell CS, Cole BJ. Betulin and lupeol in bark from four white-barked birches. Phytochemistry. 1988;27:2175–6.

    Article  Google Scholar 

  17. Ohara S. Utilization of wood extractives I. Extractives from the bark of Betula platyphylla sakatcher ver. Japonica. Mokuzai Gakkaishi. 1986;132:266–73.

    Google Scholar 

  18. Hodon J, Borkova L, Pokorny J, Kazakova A, Urban M. Design and synthesis of pentacyclic triterpene conjugates and their use in medicinal research. Eur J Med Chem. 2019;182:111653–77.

    Article  CAS  PubMed  Google Scholar 

  19. Curia S, Dautle S, Satterfield B, Yorke K, Cranley CE, Dobson BE. Betulin-based thermoplastics and thermosets through sustainable and industrially viable approaches: new insights for the valorization of an underutilized resource. ACS Sustain. Chem Eng. 2019;7:16371–81.

    CAS  Google Scholar 

  20. Chen Y, Song Q, Zhao J, Gong X, Schlaad H, Zhang G. Betulin-constituted multiblock amphiphiles for broad-spectrum protein resistance. ACS Appl Mater Interfaces. 2018;10:6593–6600.

    Article  CAS  PubMed  Google Scholar 

  21. Okada M, Suzuki K, Mawatari Y, Tabata M. Biopolyester prepared using unsaturated betulin (Betulinol) extracted from outer birch bark and dicarboxylic acid dichlorides and its thermal-induced crosslinking. Eur Polym J. 2019;113:12–17.

    Article  CAS  Google Scholar 

  22. Auclair N, Kaboorani A, Riedl B, Landry V. Acrylated betulin as a comonomer for bio-based coatings. Part I: Characterization, photo-polymerization behavior and thermal stability. Ind Crop Prod. 2015;76:530–7.

    Article  CAS  Google Scholar 

  23. Auclair N, Kaboorani A, Riedl B, Landry V. Acrylated betulin as a comonomer for bio-based coatings. Part II: Mechanical and optical properties. Ind Crop Prod. 2016;82:118–26.

    Article  CAS  Google Scholar 

  24. Claude B, Viron‐Lamy C, Haupt K, Morin P. Synthesis of a molecularly imprinted polymer for the solid-phase extraction of betulin and betulinic acid from plane bark. Phytochem Anal. 2010;21:180–5.

    Article  CAS  PubMed  Google Scholar 

  25. Ma Z, Jia YG, Zhu XX. Glycopolymers bearing galactose and betulin: synthesis, encapsulation, and lectin recognition. Biomacromolecules. 2017;18:3812–8.

    Article  CAS  PubMed  Google Scholar 

  26. Takata T, Ishiwari F, Sato T, Seto R, Koyama Y. Synthesis, structure, and properties of polyacetylenes possessing chiral spirobifluorene moieties in the side chain. Polym J. 2008;40:846–53.

    Article  CAS  Google Scholar 

  27. Aoki T, Kokai M, Shinohara KI, Oikawa E. Chiral helical conformation of the polyphenylacetylene having optically-active bulky substituent. Chem Lett. 1993;22:2009–12.

    Article  Google Scholar 

  28. San Jose BA, Yan J, Akagi K. Dynamic switching of the circularly polarized luminescence of disubstituted polyacetylene by selective transmission through a thermotropic chiral nematic liquid crystal. Angew Chem Int Ed. 2014;53:10641–4.

    Article  CAS  Google Scholar 

  29. Kaneko T, Umeda Y, Yamamoto T, Teraguchi M, Aoki T. Assignment of helical sense for poly(phenylacetylene) bearing achiral galvinoxyl chromophore synthesized by helix-sense-selective polymerization. Macromolecules. 2005;38:9420–6.

    Article  CAS  Google Scholar 

  30. Kaneko T, Umeda Y, Jia H, Hadano S, Teraguchi M, Aoki T. Helix-sense tunability induced by achiral diene ligands in the chiral catalytic system for the helix-sense-selective polymerization of achiral and bulky phenylacetylene monomers. Macromolecule. 2007;40:7098–102.

    Article  CAS  Google Scholar 

  31. Liu L, Zhang G, Aoki T, Wang Y, Kaneko T, Teraguchi M, et al. Synthesis of one-handed helical block copoly(substituted acetylene)s consisting of dynamic cis-transoidal and static cis-cisoidal block: chiral teleinduction in helix-sense-selective polymerization using a chiral living polymer as an initiator. ACS Macro Lett. 2016;5:1381–5.

    Article  CAS  PubMed  Google Scholar 

  32. Yashima E, Matsushima T, Okamoto Y. Chirality assignment of amines and amino alcohols based on circular dichroism induced by helix formation of a stereoregular poly((4-carboxyphenyl)acetylene) through acid-base complexation. J Am Chem Soc. 1997;119:6345–59.

    Article  CAS  Google Scholar 

  33. Yashima E, Maeda K. Chirality-responsive helical polymers. Macromolecules. 2008;41:3–12.

    Article  CAS  Google Scholar 

  34. Maeda K, Hirose D, Okoshi N, Shimomura K, Wada Y, Ikai T, et al. Direct detection of hardly detectable hidden chirality of hydrocarbons and deuterated isotopomers by a helical polyacetylene through chiral amplification and memory. J Am Chem Soc. 2018;140:3270–6.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Y, Deng J, Pan K. Chiral helical polymer nanomaterials with tunable morphology: prepared with chiral solvent to induce helix-sense-selective precipitation polymerization. Macromolecules. 2018;51:8878–86.

    Article  CAS  Google Scholar 

  36. Zhang L, Ma Z, Wang R, Zhu M. Synthesis and characterization of methacrylate-functionalized betulin derivatives as antibacterial comonomer for dental restorative resins. ACS Biomater Sci Eng. 2021;7:3132–40.

    Article  CAS  PubMed  Google Scholar 

  37. Melissaris AP, Litt MH. Economical and convenient synthesis of p-ethynylbenzoic acid and p-ethynylbenzoyl chloride. J Org Chem. 1992;57:6998–9.

    Article  CAS  Google Scholar 

  38. Zang Y, Aoki T, Teraguchi M, Kaneko T, Ma L, Jia H. Synthesis and oxygen permeation of novel polymers of phenylacetylenes having two hydroxyl groups via different lengths of spacers. Polymer. 2015;56:199–206.

    Article  CAS  Google Scholar 

  39. Spivak AY, Keiser J, Vargas M, Gubaidullin RR, Nedopekina DA, Shakurova ER, et al. Synthesis and activity of new triphenylphosphonium derivatives of betulin and betulinic acid against Schistosoma mansoni in vitro and in vivo. Bioorg Med Chem. 2014;22:6297–304.

    Article  CAS  PubMed  Google Scholar 

  40. Tsepaeva OV, Nemtarev A, Abdullin TI, Grigor’eva LR, Kuznetsova EV, Akhmadishina RA, et al. Design, synthesis, and cancer cell growth inhibitory activity of triphenylphosphonium derivatives of the triterpenoid betulin. J Nat Prod. 2017;80:2232–9.

    Article  CAS  PubMed  Google Scholar 

  41. Saeed I, Khan FZ, Shiotsuki M, Masuda T. Synthesis and properties of carbamate-and amine-containing poly (phenylacetylenes). J Polym Sci Pol Chem. 2009;47:1853–63.

    Article  CAS  Google Scholar 

  42. Lai LM, Lam JW, Tang BZ. Synthesis and chiroptical properties ofl-valine-containing poly(phenylacetylene)s with (a)chiral pendant terminal groups. J Polym Sci Pol Chem. 2006;44:2117–29.

    Article  CAS  Google Scholar 

  43. Wei H, Wang F, Qian X, Li S, Hu Z, Sun H, et al. Superhydrophobic fluorine-rich conjugated microporous polymers monolithic nanofoam with excellent heat insulation property. Chem Eng J. 2018;351:856–66.

    Article  CAS  Google Scholar 

  44. Qian X, Zhu ZQ, Sun HX, Ren F, Mu P, Liang W, et al. Superhydrophobic fluorine-rich conjugated microporous polymers monolithic nanofoam with excellent heat insulation property. ACS Appl Mater Inter. 2016;8:21063–9.

    Article  CAS  Google Scholar 

  45. Chen C, Zhao B, Deng J. Optically active porous microspheres consisting of helical substituted polyacetylene prepared by precipitation polymerization without porogen and the application in enantioselective crystallization. Acs Macro Lett. 2015;4:348–52.

    Article  CAS  PubMed  Google Scholar 

  46. Miao T, Cheng X, Ma H, He Z, Zhang Z, Zhou N, et al. Transfer, amplification, storage, and complete self‐recovery of supramolecular chirality in an achiral polymer system. Angew Chem. 2021;133:18714–9.

    Article  Google Scholar 

  47. Shi G, Dai X, Zhou Y, Zhang J, Shen J, Wan X. Synthesis and enantioseparation of proline-derived helical polyacetylenes as chiral stationary phases for HPLC. Polym Chem. 2020;11:3179–87.

    Article  CAS  Google Scholar 

  48. Zhang ZG, Deng JP, Li JW, Yang WT. Influence of solvent on the secondary structure of helical poly(N-propargyl-(1R)-camphor-10-sulfamide). Polym J. 2008;40:436–41.

    Article  CAS  Google Scholar 

  49. Kaneko T, Liang XJ, Kawami A, Sato M, Namikoshi T, Teraguchi M, et al. Transformation from preformed racemic helical poly(phenylacetylene)s to the enantioenriched helical polymers by chiral solvation, followed by removal of the chiral solvents. Polym J. 2012;44:327–33.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by research projects of basic scientific research operating expenses of provincial universities of Heilongjiang Province of China (135209218).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhichun Shi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Z., Wen, J., Zhao, Y. et al. Novel synthesis of porous one-handed helical poly(substituted phenylacetylene) bearing betulin derivatives pendant groups. Polym J 55, 203–211 (2023). https://doi.org/10.1038/s41428-022-00752-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00752-7

Search

Quick links