Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Postmodification of highly delocalized cations in an azide-based polymer via copper-catalyzed cycloaddition for anion exchange membranes

Abstract

We synthesized a styrene-based polymer containing fused expanded pyridinium (FEP) moieties as side chains for an anion exchange membrane. FEPs were incorporated into poly(4-azidomethylstyrene) via copper-catalyzed alkyne-azide cycloaddition (click chemistry) to yield an FEP content of 10.5 mol%, which depended on the FEP feed ratio. The FEP polymer membrane containing 10.5 mol% of FEP exhibited high hydroxide conductivity of 123.4 (±13.3) mS cm–1 with a relatively low ion-exchange capacity of 0.77 (±0.03) at 80 °C under 80% relative humidity. Density functional theory studies revealed that FEP is a considerably soft acid owing to substantial delocalization of the positive charge in the rigid π structure. The high ion conductivity and low ion-exchange capacity can be attributed to weak interactions between the hard base (hydroxide ions) and soft acid (FEP).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Luo T, Abdu S, Wessling M. Selectivity of ion exchange membranes: a review. J Membr Sci. 2018;555:429–54.

    Article  CAS  Google Scholar 

  2. Vincent I, Bessarabov D. Low cost hydrogen production by anion exchange membrane electrolysis: a review. Renew Sustain Energy Rev. 2018;81:1690–704.

    Article  CAS  Google Scholar 

  3. Pan ZF, An L, Zhao TS, Tang ZK. Advances and challenges in alkaline anion exchange membrane fuel cells. Prog Energy Combust Sci. 2018;66:141–75.

    Article  Google Scholar 

  4. Pan Y, Jiang K, Sun X, Ma S, So Y-M, Ma H, et al. Facilitating ionic conduction for anion exchange membrane via employing star-shaped block copolymer. J Membr Sci. 2021;630:119290.

    Article  CAS  Google Scholar 

  5. Liu Z, Bai L, Miao S, Li C, Pan J, Jin Y, et al. Structure-property relationship of poly(2,6-dimethyl-1,4-phenylene oxide) anion exchange membranes with pendant sterically crowded quaternary ammoniums. J Membr Sci. 2021;638:119693.

    Article  CAS  Google Scholar 

  6. Xu J, Ju M, Chen X, Meng L, Ren J, Lei J, et al. High alkaline stability and long-term durability of imidazole functionalized poly(ether ether ketone) by incorporating graphene oxide/metal-organic framework complex. Int J Hydrog Energy. 2022;47:25755–68.

    Article  CAS  Google Scholar 

  7. Xiao Y, Xu J, Hu L, Wang H, Gao L, Peng S, et al. Advanced anion-selective membranes with pendant quaternary ammonium for neutral aqueous supporting redox flow battery. J Membr Sci. 2022;659:120748.

    Article  CAS  Google Scholar 

  8. Jiang T, Wang C, Wang T, Wang X, Wang X, Li X, et al. Imidazolium structural isomer pyrazolium: a better alkali-stable anion conductor for anion exchange membranes. J Membr Sci. 2022;660:120843.

    Article  CAS  Google Scholar 

  9. Jang H, Hossain MA, Sutradhar SC, Ahmed F, Choi K, Ryu T, et al. Anion conductive tetra-sulfonium hydroxides poly(fluorenylene ether sulfone) membrane for fuel cell application. Int J Hydrog Energy. 2017;42:12759–67.

    Article  CAS  Google Scholar 

  10. Miller HA, Bouzek K, Hnat J, Loos S, Bernäcker CI, Weißgärber T, et al. Green hydrogen from anion exchange membrane water electrolysis: a review of recent developments in critical materials and operating conditions. Sustain Energy Fuels. 2020;4:2114–33.

    Article  CAS  Google Scholar 

  11. Peron J, Mani A, Zhao X, Edwards D, Adachi M, Soboleva T, et al. Properties of Nafion® NR-211 membranes for PEMFCs. J Membr Sci. 2010;356:44–51.

    Article  CAS  Google Scholar 

  12. Wu L, Pan Q, Varcoe JR, Zhou D, Ran J, Yang Z, et al. Thermal crosslinking of an alkaline anion exchange membrane bearing unsaturated side chains. J Membr Sci. 2015;490:1–8.

    Article  CAS  Google Scholar 

  13. Huang J, Yu Z, Tang J, Wang P, Tan Q, Wang J, et al. A review on anion exchange membranes for fuel cells: anion-exchange polyelectrolytes and synthesis strategies. Int J Hydrog Energy. 2022;47:27800–20.

    Article  CAS  Google Scholar 

  14. Hren M, Božič M, Fakin D, Kleinschek KS, Gorgieva S. Alkaline membrane fuel cells: anion exchange membranes and fuels. Sustain Energy Fuels. 2021;5:604–37.

    Article  CAS  Google Scholar 

  15. Knauth P, Pasquini L, Narducci R, Sgreccia E, Becerra-Arciniegas RA, Di Vona ML. Effective ion mobility in anion exchange ionomers: relations with hydration, porosity, tortuosity, and percolation. J Membr Sci. 2021;617:118622

    Article  CAS  Google Scholar 

  16. Mandal M, Huang G, Kohl PA. Highly conductive anion-exchange membranes based on cross-linked poly (norbornene): vinyl addition polymerization. ACS Appl Energy Mater. 2019;2:2447–57.

    Article  CAS  Google Scholar 

  17. Tanaka M, Koike M, Miyatake K, Watanabe M. Anion conductive aromatic ionomers containing fluorenyl groups. Macromolecules. 2010;43:2657–9.

    Article  CAS  Google Scholar 

  18. Pan J, Chen C, Zhuang L, Lu J. Designing advanced alkaline polymer electrolytes for fuel cell applications. Acc Chem Res. 2012;45:473–81.

    Article  CAS  Google Scholar 

  19. Kim Y, Wang Y, France-Lanord A, Wang Y, Wu Y-CM, Lin S, et al. Ionic highways from covalent assembly in highly conducting and stable anion exchange membrane fuel cells. J Am Chem Soc. 2019;141:18152–9.

    Article  CAS  Google Scholar 

  20. Weiber EA, Jannasch P. Anion-conducting polysulfone membranes containing hexa-imidazolium functionalized biphenyl units. J Membr Sci. 2016;520:425–33.

    Article  CAS  Google Scholar 

  21. Sun Z, Lin B, Yan F. Anion-exchange membranes for alkaline fuel-cell applications: the effects of cations. ChemSusChem. 2018;11:58–70.

    Article  Google Scholar 

  22. Ma Q, Zhang H, Zhou C, Zheng L, Cheng P, Nie J, et al. Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion. Angew Chem Int Ed. 2016;55:2521–5.

    Article  CAS  Google Scholar 

  23. Marino MG, Melchior JP, Wohlfarth A, Kreuer KD. Hydroxide, halide and water transport in a model anion exchange membrane. J Membr Sci. 2014;464:61–71.

    Article  CAS  Google Scholar 

  24. Pearson RG. Hard and soft acids and bases. J Am Chem Soc. 1963;85:3533–9.

    Article  CAS  Google Scholar 

  25. Grew KN, Chu D, Chiu WK. Ionic equilibrium and transport in the alkaline anion exchange membrane. J Electrochem Soc. 2010;157:B1024.

    Article  CAS  Google Scholar 

  26. Lei Q, Li K, Bhattacharya D, Xiao J, Kole S, Zhang Q, et al. Counterion condensation or lack of solvation? Understanding the activity of ions in thin film block copolymer electrolytes. J Mater Chem A. 2020;8:15962–75.

    Article  CAS  Google Scholar 

  27. Motoishi Y, Tanaka N, Fujigaya T. Synthesis and anion conductivity of anion-exchange membrane with fused expanded pyridinium structure as cationic moiety. Chem Lett. 2021;50:1504–7.

    Article  CAS  Google Scholar 

  28. Yang W, Chen J, Yan J, Liu S, Yan Y, Zhang Q. Advance of click chemistry in anion exchange membranes for energy application. J Polym Sci. 2022;60:627–49.

    Article  CAS  Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09 Citation. Wallingford CT: Gaussian, Inc.; 2004.

  30. García-Cuadrado D, Cuadro AM, Barchín BM, Nunez A, Caneque T, Alvarez-Builla J, et al. Palladium-mediated functionalization of heteroaromatic cations: comparative study on quinolizinium cations. J Org Chem. 2006;71:7989–95.

    Article  Google Scholar 

  31. Kosugi M, Sasazawa K, Shimizu Y, Migita T. Reactions of allyltin compounds III. Allylation of aromatic halides With allyltributyltin in the presence of tetrakis (triphenylphosphine) palladium (O). Chem Lett. 1977;6:301–2.

    Article  Google Scholar 

  32. Tuli SK, Roy AL, Elgammal RA, Zawodzinski TA, Fujiwara T. Polystyrene-based anion exchange membranes via click chemistry: improved properties and AEM performance. Polym Int. 2018;67:1302–12.

    Article  CAS  Google Scholar 

  33. Haldón E, Nicasio MC, Pérez PJ. Copper-catalysed azide–alkyne cycloadditions (CuAAC): an update. Org Biomol Chem. 2015;13:9528–50.

    Article  Google Scholar 

  34. Chu X, Liu L, Huang Y, Guiver MD, Li N. Practical implementation of bis-six-membered N-cyclic quaternary ammonium cations in advanced anion exchange membranes for fuel cells: synthesis and durability. J Membr Sci. 2019;578:239–50.

    Article  CAS  Google Scholar 

  35. Hwang CW, Park H-M, Oh CM, Hwang TS, Shim J, Jin C-S. Synthesis and characterization of vinylimidazole-co-trifluoroethylmethacrylate-co-divinylbenzene anion-exchange membrane for all-vanadium redox flow battery. J Membr Sci. 2014;468:98–106.

    Article  CAS  Google Scholar 

  36. Hagesteijn KFL, Jiang S, Ladewig BP. A review of the synthesis and characterization of anion exchange membranes. J Mater Sci. 2018;53:11131–50.

    Article  CAS  Google Scholar 

  37. Fukuta K. Electrolyte Materials for AMFCs and AMFC Performance. AMFC Workshop. 2011.

  38. Abouzari-Lotf E, Jacob MV, Ghassemi H, Zakeri M, Nasef MM, Abdolahi Y, et al. Highly conductive anion exchange membranes based on polymer networks containing imidazolium functionalised side chains. Sci Rep. 2021;11:3764.

    Article  CAS  Google Scholar 

  39. Mohanty AD, Bae C. Mechanistic analysis of ammonium cation stability for alkaline exchange membrane fuel cells. J Mater Chem A. 2014;2:17314–20.

    Article  CAS  Google Scholar 

  40. Hugar KM, You W, Coates GW. Protocol for the quantitative assessment of organic cation stability for polymer electrolytes. ACS Energy Lett. 2019;4:1681–6.

    Article  CAS  Google Scholar 

  41. Cui K, Mali KS, Ivasenko O, Wu D, Feng X, Walter M, et al. Squeezing, then stacking: from breathing pores to three-dimensional ionic self-assembly under electrochemical. Control Angew Chem, Int Ed. 2014;53:12951–4.

    Article  CAS  Google Scholar 

  42. Devadoss A, Chidsey CED. Azide-modified graphitic surfaces for covalent attachment of alkyne-terminated molecules by “click” chemistry. J Am Chem Soc. 2007;129:5370–1.

    Article  CAS  Google Scholar 

  43. Zhang J, Zhang K, Liang X, Yu W, Ge X, Shehzad MA, et al. Self-aggregating cationic-chains enable alkaline stable ion-conducting channels for anion-exchange membrane fuel cells. J Mater Chem A. 2021;9:327–37.

    Article  CAS  Google Scholar 

  44. Pan J, Chen C, Li Y, Wang L, Tan L, Li G, et al. Constructing ionic highway in alkaline polymer electrolytes. Energy Environ Sci. 2014;7:354–60.

    Article  CAS  Google Scholar 

  45. Xu S, Wu W, Wan R, Wei W, Li Y, Wang J, et al. Tailoring the molecular structure of pyridine-based polymers for enhancing performance of anion exchange electrolyte membranes. Renew Energy. 2022;194:366–77.

    Article  CAS  Google Scholar 

  46. Fang J, Wu Y, Zhang Y, Lyu M, Zhao J. Novel anion exchange membranes based on pyridinium groups and fluoroacrylate for alkaline anion exchange membrane fuel cells. Int J Hydrog Energy. 2015;40:12392–9.

    Article  CAS  Google Scholar 

  47. Yang Z, Liu Y, Guo R, Hou J, Wu L, Xu T. Highly hydroxide conductive ionomers with fullerene functionalities. Chem Commun. 2016;52:2788–91.

    Article  CAS  Google Scholar 

  48. Xiao Y, Zhang M, Dong D, Yang Z, Cao Y, Wang K, et al. Preparation of branch polyethyleneimine (BPEI) crosslinked anion exchange membrane based on poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS). Macromol Mater Eng. 2021;306:2000693.

    Article  CAS  Google Scholar 

  49. Wang Z, Li Z, Chen N, Lu C, Wang F, Zhu H. Crosslinked poly (2,6-dimethyl-1,4-phenylene oxide) polyelectrolyte enhanced with poly (styrene-b-(ethylene-co-butylene)-b-styrene) for anion exchange membrane applications. J Membr Sci. 2018;564:492–500.

    Article  CAS  Google Scholar 

  50. Wang JT-W, Hsu SL-C. Enhanced high-temperature polymer electrolyte membrane for fuel cells based on polybenzimidazole and ionic liquids. Electrochim Acta. 2011;56:2842–6.

    Article  CAS  Google Scholar 

  51. Hamada T, Yoshimura K, Takeuchi K, Watanabe S, Zhao Y, Hiroki A, et al. Synthesis and characterization of 4-vinylimidazolium/styrene-cografted anion-conducting electrolyte membranes. Macromol Chem Phys. 2021;222:2100028.

    Article  CAS  Google Scholar 

  52. Emmanuel K, Erigene B, Cheng C, Mondal AN, Hossain MM, Khan MI, et al. Facile synthesis of pyridinium functionalized anion exchange membranes for diffusion dialysis application. Sep Purif Technol. 2016;167:108–16.

    Article  CAS  Google Scholar 

  53. Granzhan A, Ihmels H, Tian M. The benzo[b]quinolizinium ion as a water-soluble platform for the fluorimetric detection of biologically relevant analytes. ARKIVOC. 2015;2015:494–523.

    Article  Google Scholar 

  54. Saito M, Kawaharasaki S, Ito K, Yamada S, Hayamizu K, Seki S. Strategies for fast ion transport in electrochemical capacitor electrolytes from diffusion coefficients, ionic conductivity, viscosity, density and interaction energies based on HSAB theory. RSC Adv. 2017;7:14528–35

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the SPRING program (No. JPMJSP2136), ACT-X (No. AJ219069-a01) and CREST (No. AJ199002) from Japan Science and Technology Agency (JST), Japan; the Nanotechnology Platform Project from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan; and KAKENHI (No. JP18H01816) and the Bilateral Program (No. AJ190078) from the Japan Society for the Promotion of Science (JSPS), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuyohiko Fujigaya.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motoishi, Y., Tanaka, N. & Fujigaya, T. Postmodification of highly delocalized cations in an azide-based polymer via copper-catalyzed cycloaddition for anion exchange membranes. Polym J 55, 171–180 (2023). https://doi.org/10.1038/s41428-022-00730-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00730-z

Search

Quick links