Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Development of a proton exchange membrane based on trifluoromethanesulfonylimide-grafted polybenzimidazole

Abstract

Trifluoromethanesulfonylimide-grafted polybenzimidazole (PBI-TFSI) was synthesized for proton exchange membrane (PEM) applications. Its proton conductivity was (a) less dependent on humidity and (b) higher than that of conventional fluorine-based PEM (Nafion) and propanesulfonic acid-grafted PBI (PBI-PS) at a relative humidity of 40%. The chemical structure of PBI-TFSI was investigated using 1H and 19F nuclear magnetic resonance and Fourier transform infrared spectroscopy. The membranes exhibited good transparency, flexibility, and thermal stability up to 350 °C. Membranes with different side chain grafting ratios were prepared, and the water uptake and hydration number of the PBI-TFSI membranes were lower than those of the PBI-PS membranes, most likely because of the hydrophobicity of the side chain. The higher proton concentration provided by TFSI with stronger acidity than PS might be the reason for the higher proton conductivities of PBI-TFSI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu Y-L. Developments of highly proton-conductive sulfonated polymers for proton exchange membrane fuel cells. Polym Chem. 2012;3:1373–83.

    Article  CAS  Google Scholar 

  2. Byun GH, Kim JA, Kim NY, Cho YS, Park CR. Molecular engineering of hydrocarbon membrane to substitute perfluorinated sulfonic acid membrane for proton exchange membrane fuel cell operation. Materials Today. Energy. 2020;17:100483.

    Google Scholar 

  3. Shin DW, Guiver MD, Lee YM. Hydrocarbon-based polymer electrolyte membranes: importance of morphology on ion transport and membrane stability. Chem Rev. 2017;117:4759–805.

    Article  CAS  PubMed  Google Scholar 

  4. Escorihuela J, Olvera-Mancilla J, Alexandrova L, del Castillo LF, Compañ V. Recent progress in the development of composite membranes based on polybenzimidazole for high temperature proton exchange membrane (PEM) fuel cell applications. Polymers. 2020;12:1861.

    Article  CAS  PubMed Central  Google Scholar 

  5. Houchins C, Kleen GJ, Spendelow JS, Kopasz J, Peterson D, Garland NL, et al. DOE progress towards developing low-cost, high performance, durable polymer electrolyte membranes for fuel cell applications. Membranes. 2012;2:855–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kusoglu A, Weber AZ. New insights into perfluorinated sulfonic-acid ionomers. Chem Rev. 2017;117:987–1104.

    Article  CAS  PubMed  Google Scholar 

  7. Cooper KR. Progress toward accurate through-plane ion transport resistance measurement of thin solid electrolytes. J Electrochem Soc. 2010;157:B1731.

    Article  CAS  Google Scholar 

  8. Li N, Guiver MD. Ion transport by nanochannels in ion-containing aromatic copolymers. Macromolecules. 2014;47:2175–98.

    Article  CAS  Google Scholar 

  9. Ghosh A, Banerjee S. Sulfonated fluorinated-aromatic polymers as proton exchange membranes. e-Polym. 2014;14:227–57.

    Article  CAS  Google Scholar 

  10. Lochner T, Kluge RM, Fichtner J, El-Sayed HA, Garlyyev B, Bandarenka AS. Temperature effects in polymer electrolyte membrane fuel cells. ChemElectroChem. 2020;7:3545–68.

    Article  CAS  Google Scholar 

  11. Xiao P, Li J, Tang H, Wang Z, Pan M. Physically stable and high performance Aquivion/ePTFE composite membrane for high temperature fuel cell application. J Membr Sci. 2013;442:65–71.

    Article  CAS  Google Scholar 

  12. Economou NJ, Barnes AM, Wheat AJ, Schaberg MS, Hamrock SJ, Buratto SK. Investigation of humidity dependent surface morphology and proton conduction in multi-acid side chain membranes by conductive probe atomic force microscopy. J Phys Chem B. 2015;119:14280–87.

    Article  CAS  PubMed  Google Scholar 

  13. Bae B, Miyatake K, Watanabe M. Effect of the Hydrophobic Component on the Properties of Sulfonated Poly(arylene ether sulfone)s. Macromolecules. 2009;42:1873–80.

    Article  CAS  Google Scholar 

  14. Chang Y, Brunello GF, Fuller J, Disabb-Miller ML, Hawley ME, Kim YS, et al. Polymer electrolyte membranes based on poly(arylene ether sulfone) with pendant perfluorosulfonic acid. Polym Chem. 2013;4:272–81.

    Article  CAS  Google Scholar 

  15. Na T, Shao K, Zhu J, Sun H, Liu Z, Zhao C, et al. Block sulfonated poly(arylene ether ketone) containing flexible side-chain groups for direct methanol fuel cells usage. J Membr Sci. 2012;417-418:61–68.

    Article  CAS  Google Scholar 

  16. Liu S, Luo W, Zhang H, Li X, Hu W, Guiver MD, et al. Novel iodo-containing poly(arylene ether ketone)s as intermediates for grafting perfluoroalkyl sulfonic acid groups. React Funct Polym. 2017;111:7–13.

    Article  CAS  Google Scholar 

  17. Shiino K, Miyake J, Miyatake K. Highly stable polyphenylene ionomer membranes from dichlorobiphenyls. Chem Commun. 2019;55:7073–76.

    Article  CAS  Google Scholar 

  18. Ahmed F, Sutradhar SC, Ryu T, Jang H, Choi K, Yang H, et al. Comparative study of sulfonated branched and linear poly(phenylene)s polymer electrolyte membranes for fuel cells. Int J Hydrog Energy. 2018;43:5374–85.

    Article  CAS  Google Scholar 

  19. Aili D, Henkensmeier D, Martin S, Singh B, Hu Y, Jensen JO, et al. Polybenzimidazole-based high-temperature polymer electrolyte membrane fuel cells: new insights and recent progress. Electrochem. Energ. Rev. 2020;3:793–845.

  20. Aili D, Yang J, Jankova K, Henkensmeier D, Li Q. From polybenzimidazoles to polybenzimidazoliums and polybenzimidazolides. J Mater Chem A. 2020;8:12854–86.

    Article  CAS  Google Scholar 

  21. Li X, Ma H, Wang P, Liu Z, Peng J, Hu W, et al. Highly conductive and mechanically stable imidazole-rich cross-linked networks for high-temperature proton exchange membrane fuel cells. Chem Mater. 2020;32:1182–91.

    Article  CAS  Google Scholar 

  22. Yang JS, Cleemann LN, Steenberg T, Terkelsen C, Li QF, Jensen JO, et al. High molecular weight polybenzimidazole membranes for high temperature PEMFC. Fuel Cells. 2014;14:7–15.

    Article  CAS  Google Scholar 

  23. Oono Y, Sounai A, Hori M. Long-term cell degradation mechanism in high-temperature proton exchange membrane fuel cells. J Power Sources. 2012;210:366–73.

    Article  CAS  Google Scholar 

  24. Kreuer K-D. Ion conducting membranes for fuel cells and other electrochemical devices. Chem Mater. 2014;26:361–80.

    Article  CAS  Google Scholar 

  25. Lee K-S, Spendelow JS, Choe Y-K, Fujimoto C, Kim YS. An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs. Nat Energy. 2016;1:16120.

    Article  CAS  Google Scholar 

  26. Yamaguchi I, Osakada K, Yamamoto T. Introduction of a long alkyl side chain to poly(benzimidazole)s. N-alkylation of the imidazole ring and synthesis of novel side chain polyrotaxanes. Macromolecules. 1997;30:4288–94.

    Article  CAS  Google Scholar 

  27. Kumbharkar SC, Kharul UK. N-substitution of polybenzimidazoles: synthesis and evaluation of physical properties. Eur Polym J. 2009;45:3363–71.

    Article  CAS  Google Scholar 

  28. Bhavsar RS, Kumbharkar SC, Rewar AS, Kharul UK. Polybenzimidazole based film forming polymeric ionic liquids: synthesis and effects of cation–anion variation on their physical properties. Polym Chem. 2014;5:4083–96.

    Article  CAS  Google Scholar 

  29. Kawahara M, Rikukawa M, Sanui K, Ogata N. Synthesis and proton conductivity of sulfopropylated poly(benzimidazole) films. Solid State Ion. 2000;136-137:1193–96.

    Article  CAS  Google Scholar 

  30. Bae JM, Honma I, Murata M, Yamamoto T, Rikukawa M, Ogata N. Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells. Solid State Ion. 2002;147:189–94.

    Article  CAS  Google Scholar 

  31. Kulkarni MP, Peckham TJ, Thomas OD, Holdcroft S. Synthesis of highly sulfonated polybenzimidazoles by direct copolymerization and grafting. J Polym Sci Part A. 2013;51:3654–66.

    Article  CAS  Google Scholar 

  32. Rozière J, Jones DJ, Marrony M, Glipa X, Mula B. On the doping of sulfonated polybenzimidazole with strong bases. Solid State Ion. 2001;145:61–68.

    Article  Google Scholar 

  33. Jouanneau J, Mercier R, Gonon L, Gebel G. Synthesis of sulfonated polybenzimidazoles from functionalized monomers: preparation of ionic conducting membranes. Macromolecules. 2007;40:983–90.

    Article  CAS  Google Scholar 

  34. Koppel IA, Taft RW, Anvia F, Zhu S-Z, Hu L-Q, Sung K-S, et al. The gas-phase acidities of very strong neutral bronsted acids. J Am Chem Soc. 1994;116:3047–57.

    Article  CAS  Google Scholar 

  35. Chandra Sutradhar S, Rahman MM, Ahmed F, Ryu T, Jin L, Yoon S, et al. Improved proton conductive membranes from poly(phenylenebenzophenone)s with pendant sulfonyl imide acid groups for fuel cells. J Power Sources. 2019;442:227233.

    Article  CAS  Google Scholar 

  36. Sutradhar SC, Rahman MM, Ahmed F, Ryu T, Yoon S, Lee S, et al. Thermally and chemically stable poly(phenylenebenzophenone) membranes for proton exchange membrane fuel cells by Ni (0) catalyst. J Ind Eng Chem. 2019;76:233–39.

    Article  CAS  Google Scholar 

  37. Matsumoto K, Endo T. Synthesis of networked polymers by copolymerization of monoepoxy-substituted lithium sulfonylimide and diepoxy-substituted poly(ethylene glycol), and their properties. J Polym Sci, Part A. 2011;49:1874–80.

    Article  CAS  Google Scholar 

  38. Porcarelli L, Manojkumar K, Sardon H, Llorente O, Shaplov AS, Vijayakrishna K, et al. Single ion conducting polymer electrolytes based on versatile polyurethanes. Electrochim Acta. 2017;241:526–34.

    Article  CAS  Google Scholar 

  39. Byun CK, Sharif I, DesMarteau DD, Creager SE, Korzeniewski C. Infrared spectroscopy of bis[(perfluoroalkyl)sulfonyl] Imide ionomer membrane materials. J Phys Chem B. 2009;113:6299–304.

    Article  CAS  PubMed  Google Scholar 

  40. Shainyan BA, Tolstikova LL. Trifluoromethanesulfonamides and related compounds. Chem Rev. 2013;113:699–733.

    Article  CAS  PubMed  Google Scholar 

  41. Puskar L, Ritter E, Schade U, Yandrasits M, Hamrock SJ, Schaberg M, et al. Infrared dynamics study of thermally treated perfluoroimide acid proton exchange membranes. Phys Chem Chem Phys. 2017;19:626–35.

    Article  CAS  Google Scholar 

  42. Musto P, Karasz FE, MacKnight WJ. Fourier transform infra-red spectroscopy on the thermo-oxidative degradation of polybenzimidazole and of a polybenzimidazole/polyetherimide blend. Polymer. 1993;34:2934–45.

    Article  CAS  Google Scholar 

  43. Asensio JA, Borrós S, Gómez-Romero P. Proton-conducting polymers based on benzimidazoles and sulfonated benzimidazoles. J Polym Sci Part A. 2002;40:3703–10.

    Article  CAS  Google Scholar 

  44. Gieselman MB, Reynolds JR. Water-soluble polybenzimidazole-based polyelectrolytes. Macromolecules. 1992;25:4832–4.

    Article  CAS  Google Scholar 

  45. Namazi H, Ahmadi H. Novel proton conducting membranes based on butylsulfonated poly[2,2’-(m-pyrazolidene)−5,5’-bibenzimidazole] (BS-PPBI): Proton conductivity, acid doping and water uptake properties. J. Membr. Sci. 2011;383:280–88.

    Article  CAS  Google Scholar 

  46. Karimi MB, Mohammadi F, Hooshyari K. Recent approaches to improve Nafion performance for fuel cell applications: a review. Int J Hydrog Energy. 2019;44:28919–38.

    Article  CAS  Google Scholar 

  47. Peron J, Ruiz E, Jones DJ, Rozière J. Solution sulfonation of a novel polybenzimidazole: a proton electrolyte for fuel cell application. J Membr Sci. 2008;314:247–56.

    Article  CAS  Google Scholar 

  48. Firouz Tadavani K, Abdolmaleki A, Molavian MR, Zhiani M. A promising proton-exchange membrane: high efficiency in low humidity. ACS Applied Energy. ACS Appl Energy Mater. 2018;1:2464–73.

    Article  CAS  Google Scholar 

  49. Bouchet R, Siebert E. Proton conduction in acid doped polybenzimidazole. Solid State Ion. 1999;118:287–99.

    Article  CAS  Google Scholar 

  50. Glipa X, Bonnet B, Mula B, Jones J, Rozière D, Investigation J. of the conduction properties of phosphoric and sulfuric acid doped polybenzimidazole. J Mater Chem. 1999;9:3045–49.

    Article  CAS  Google Scholar 

  51. Yaghini N, Pitawala J, Matic A, Martinelli A. Effect of water on the local structure and phase behavior of imidazolium-based protic ionic liquids. J Phys Chem B. 2015;119:1611–22.

    Article  CAS  PubMed  Google Scholar 

  52. Yan X, Dong Z, Di M, Hu L, Zhang C, Pan Y, et al. A highly proton-conductive and vanadium-rejected long-side-chain sulfonated polybenzimidazole membrane for redox flow battery. J Membr Sci. 2020;596:117616.

    Article  CAS  Google Scholar 

  53. Ahn J, Shimizu R, Miyatake K. Sulfonated aromatic polymers containing hexafluoroisopropylidene groups: a simple but effective structure for fuel cell membranes. J Mater Chem A. 2018;6:24625–32.

    Article  CAS  Google Scholar 

  54. Nguyen H-D, Porihel R, Brubach J-B, Planes E, Soudant P, Judeinstein P, et al. Perfluorosulfonyl imide versus perfluorosulfonic acid ionomers in proton-exchange membrane fuel cells at low relative humidity. ChemSusChem. 2020;13:590–600.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang X, Li Y, Liu X, Zhang J, Yin Y, Guiver MD. A paradigm shift for a new class of proton exchange membranes with ferrocyanide proton-conducting groups providing enhanced oxidative stability. J Membr Sci. 2020;616:118536.

    Article  CAS  Google Scholar 

  56. Miran MS, Yasuda T, Susan MABH, Dokko K, Watanabe M. Binary protic ionic liquid mixtures as a proton conductor: high fuel cell reaction activity and facile proton transport. J Phys Chem C. 2014;118:27631–39.

    Article  CAS  Google Scholar 

  57. Lee S-Y, Ogawa A, Kanno M, Nakamoto H, Yasuda T, Watanabe M. Nonhumidified intermediate temperature fuel cells using protic ionic liquids. J Am Chem Soc. 2010;132:9764–73.

    Article  CAS  PubMed  Google Scholar 

  58. Lin J, Wang L, Zinkevich T, Indris S, Suo Y, Korte C. Influence of residual water and cation acidity on the ionic transport mechanism in proton-conducting ionic liquids. Phys Chem Chem Phys. 2020;22:1145–53.

    Article  CAS  PubMed  Google Scholar 

  59. Yaghini N, Nordstierna L, Martinelli A. Effect of water on the transport properties of protic and aprotic imidazolium ionic liquids—an analysis of self-diffusivity, conductivity, and proton exchange mechanism. Phys Chem Chem Phys. 2014;16:9266–75.

    Article  CAS  PubMed  Google Scholar 

  60. Miran MS, Kinoshita H, Yasuda T, Susan MABH, Watanabe M. Physicochemical properties determined by ΔpKa for protic ionic liquids based on an organic super-strong base with various Brønsted acids. Phys Chem Chem Phys. 2012;14:5178–86.

    Article  CAS  PubMed  Google Scholar 

  61. Hara N, Ohashi H, Ito T, Yamaguchi T. Rapid proton conduction through unfreezable and bound water in a wholly aromatic pore-filling electrolyte membrane. J Phys Chem B. 2009;113:4656–63.

    Article  CAS  PubMed  Google Scholar 

  62. Singh RK, Kunimatsu K, Miyatake K, Tsuneda T. Experimental and theoretical infrared spectroscopic study on hydrated nafion membrane. Macromolecules. 2016;49:6621–29.

    Article  CAS  Google Scholar 

  63. Escorihuela J, García-Bernabé A, Compañ V. A deep insight into different acidic additives as doping agents for enhancing proton conductivity on polybenzimidazole membranes. Polymers. 2020;12:1374.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (grant no. 205295), under the Nanotechnology Platform Project of MEXT, Japan, KAKENHI (grant no. JP18H01816), bilateral program (grant no. AJ190078) of the Japanese Society for the Promotion of Science (JSPS), CREST program (grant no. AJ199002) of the Japanese Science and Technology Agency (JST), and by the TEPCO Foundation and Fukuoka Financial Group Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuyohiko Fujigaya.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, H., Miura, H., Motoishi, Y. et al. Development of a proton exchange membrane based on trifluoromethanesulfonylimide-grafted polybenzimidazole. Polym J 53, 1403–1411 (2021). https://doi.org/10.1038/s41428-021-00551-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00551-6

Search

Quick links