Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Unraveling complex performance-limiting factors of brominated ITIC derivative: PM6 organic solar cells by using time-resolved measurements

Abstract

Organic solar cells (OSCs) composed of a polymer and nonfullerene acceptor (NFA) have achieved dramatic improvements in power conversion efficiency (PCE), while the roles of many contributing factors are still not fully understood. Charge carrier mobility is conventionally considered a positive factor for NFA-OSC performance, yet this statement is often contradicted by experimental results. In this regard, indacenodithieno[3,2-b]thiophene-based NFAs (ITIC) brominated at the β, γ, and δ positions of the terminal IC groups are suitable for a comparative study of the performance-limiting factors. In this work, we evaluated the charge carrier dynamics in these ITIC (β, γ, δ):PM6 bulk heterojunction OSCs by using simultaneous time-of-flight (TOF)-time-resolved microwave conductivity (TRMC) and photoinduced charge extraction by linearly increasing voltage (photo-CELIV) techniques. The measured PCEs of these OSCs decreased in the order ITIC-γ:PM6 (9.3%) > ITIC-β:PM6 (8.5%) > ITIC:PM6 (7.5%) > ITIC-δ:PM6 (2.3%). The TOF-TRMC/photo-CELIV results revealed that despite having the highest PCE, ITIC-γ:PM6 showed both low electron and hole mobilities, while its mobility relaxation characteristics were moderate among those of the OSCs. In contrast, ITIC-γ:PM6 showed the smallest bimolecular recombination coefficient. Finally, fifteen parameters (mobility, etc.) were subjected to a linear regression analysis, which provided a quantitative understanding of the complex PCE-governing factors for NFA OSCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cui Y, Xu Y, Yao H, Bi P, Hong L, Zhang JI, et al. Single-junction organic photovoltaic cell with 19% efficiency. Adv Mater. 2021;33:2102420.

    Article  CAS  Google Scholar 

  2. Li C, Zhou J, Song J, Xu J, Zhang H, Zhang X, et al. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat Energy. 2021;6:605–13.

    Article  CAS  Google Scholar 

  3. Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, et al. 18% efficiency organic solar cells. Sci Bull 2020;65:272.

    Article  CAS  Google Scholar 

  4. Yan C, Barlow S, Wang Z, Yan H, Jen AK-Y, Marder SR. et al. Non-Fuller acceptors Org Sol cells. Nat Rev Mater. 2018;3:18003

    Article  CAS  Google Scholar 

  5. Luo Z, Li G, Gao W, Wu K, Zhang Z-G, Qiu B, et al. A universal nonfullerene electron acceptor matching with different band-gap polymer donors for high-performance polymer solar cells. J Mater Chem A. 2018;6:6874–81.

    Article  CAS  Google Scholar 

  6. Lai H, Zhao Q, Chen Z, Chen H, Chao P, Zhu Y, et al. Trifluoromethylation enables a 3D interpenetrated low-band-gap acceptor for efficient organic solar cells. Joule. 2020;4:688–700.

    Article  CAS  Google Scholar 

  7. Luginbuhl BR, Raval P, Pawlak T, Du Z, Wang T, Kupgan G, et al. Resolving atomic-scale interactions in nonfullerene acceptor organic solar cells with solid-state NMR spectroscopy, crystallographic modelling, and molecular dynamics simulations. Adv Mater. 2022;34:2105943.

    Article  Google Scholar 

  8. Li S, Zhan L, Zhao W, Zhang S, Ali B, Fu Z, et al. Revealing the effects of molecular packing on the performances of polymer solar cells based on A–D–C–D–A type non-fullerene acceptors. J Mater Chem A. 2018;6:12132–41.

    Article  CAS  Google Scholar 

  9. Wang X, Han J, Jiang H, Liu Z, Li Y, Yang C, et al. Regulation of molecular packing and blend morphology by finely tuning molecular conformation for high-performance nonfullerene polymer solar cells. ACS Appl Mater Interfaces. 2019;11:44501–12.

    Article  CAS  PubMed  Google Scholar 

  10. Mai J, Lau T-K, Li J, Peng S-H, Hsu C-S, Jeng U-S, et al. Understanding morphology compatibility for high-performance ternary organic solar cells. Chem Mater 2016;28:6186–95.

    Article  CAS  Google Scholar 

  11. Hong L, Yao H, Yu R, Xu Y, Gao B, Ge Z, et al. Investigating the trade-off between device performance and energy loss in nonfullerene organic solar cells. ACS Appl Mater Interfaces. 2019;11:29124–31.

    Article  CAS  PubMed  Google Scholar 

  12. Zuo L, Shi X, Jo SB, Liu Y, Lin F, Jen AK-Y. Tackling energy loss for high‐efficiency organic solar cells with integrated multiple strategies. Adv Mater 2018;30:1706816.

    Article  Google Scholar 

  13. Liang S, Li S, Zhang Y, Li T, Zhou H, Jin F, et al. Efficient hole transfer via delocalized excited state in small molecular acceptor: a comparative study on photodynamics of PM6:Y6 and PM6:ITIC organic photovoltaic blends. Adv Funct Mater. 2021;31:2102764.

    Article  CAS  Google Scholar 

  14. Tokmoldin N, Hosseini SM, Raoufi M, Phuong LQ, Sandberg OJ, Guan H, et al. Extraordinarily long diffusion length in PM6. Y6 Org Sol cells J Mater Chem A. 2020;8:7854.

    Article  CAS  Google Scholar 

  15. Lin Y, Firdaus Y, Nugraha M, In., Liu F, Karuthedath S, Emwas A, et al. 17.1% efficient single‐junction organic solar cells enabled by n‐type doping of the bulk‐heterojunction. Adv Sci. 2020;7:1903419.

    Article  CAS  Google Scholar 

  16. Hou J, Inganäs O, Friend RH, Gao F. Organic solar cells based on non-fullerene acceptors. Nat Mater. 2018;17:119–28.

    Article  CAS  PubMed  Google Scholar 

  17. Vithanage DA, Devižis A, Abramavičius V, Infahsaeng Y, Abramavičius D, MacKenzie RCI, et al. Visualizing charge separation in bulk heterojunction organic solar cells. Nat Commun. 2013;4:2334.

    Article  Google Scholar 

  18. Shieh J-T, Liu C-H, Meng H-F, Tseng S-R, Chao Y-C, Horng S-F. The effect of carrier mobility in organic solar cells. J Appl Phys. 2010;107:084503.

    Article  Google Scholar 

  19. Mandoc MM, Koster LJA. Optimum charge carrier mobility in organic solar cells. Appl Phys Lett. 2007;90:133504.

    Article  Google Scholar 

  20. Li Y, Zou Y. Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility. Adv Mater. 2008;20:2952–8.

    Article  CAS  Google Scholar 

  21. Würfel U, Neher D, Spies A, Albrecht S. Impact of charge transport on current–voltage characteristics and power-conversion efficiency of organic solar cells. Nat Commun. 2015;6:6951.

    Article  PubMed  Google Scholar 

  22. Oga H, Saeki A, Ogomi Y, Hayase S, Seki S. Improved understanding of the electronic and energetic landscapes of perovskite solar cells: high local charge carrier mobility, reduced recombination, and extremely shallow traps. J Am Chem Soc. 2014;136:13818–25.

    Article  CAS  PubMed  Google Scholar 

  23. Williams R, Crandall RS. Carrier generation, recombination, and transport in amorphous silicon solar cells. RCA Rev. 1979;40:371–89.

    CAS  Google Scholar 

  24. Turren-Cruz S-H, Saliba M, Mayer MT, Juárez-Santiesteban H, Mathew X, Nienhaus L, et al. Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells. Energy Environ Sci. 2018;11:78–86.

    Article  CAS  Google Scholar 

  25. Ebenhoch B, Thomson SAJ, Genevičius K, Juška G, Samuel IDW. Charge carrier mobility of the organic photovoltaic materials PTB7 and PC71BM and its influence on device performance. Org Electron. 2015;22:62–68.

    Article  CAS  Google Scholar 

  26. Yang F, Li C, Lai W, Zhang A, Huang H, Li W. Halogenated conjugated molecules for ambipolar field-effect transistors and non-fullerene organic solar cells. Mater Chem Front. 2017;1:1389.

    Article  CAS  Google Scholar 

  27. Kini GP, Jeon SJ, Moon DK. Design principles and synergistic effects of chlorination on a conjugated backbone for efficient organic photovoltaics: a critical review. Adv Mater. 2020;32:1906175.

    Article  CAS  Google Scholar 

  28. Wadsworth A, Moser M, Marks A, Little MS, Gasparini N, Brabec CJ, et al. Chem Soc Rev. 2019;48:1596–625.

    Article  CAS  PubMed  Google Scholar 

  29. Wang J-L, Liu K-K, Hong L, Ge G-Y, Zhang C, Hou J. Selenopheno[3,2-b]thiophene-based narrow-bandgap nonfullerene acceptor enabling 13.3% efficiency for organic solar cells with thickness-insensitive feature. ACS Energy Lett. 2018;3:2967–2976.

    Article  CAS  Google Scholar 

  30. Li S, Li C-Z, Shi M, Chen H. New phase for organic solar cell research: emergence of Y-series electron acceptors and their perspectives. ACS Energy Lett. 2020;5:1554–1567.

    Article  CAS  Google Scholar 

  31. Armin A, Juska G, Ullah M, Velusamy M, Burn PL, Meredith P, et al. Balanced carrier mobilities: not a necessary condition for high‐efficiency thin organic solar cells as determined by MIS‐CELIV. Adv Energy Mater. 2014;4:1300954.

    Article  Google Scholar 

  32. Choulis SA, Nelson J, Kim Y, Poplavskyy D, Kreouzis T, Durrant JR, et al. Investigation of transport properties in polymer/fullerene blends using time-of-flight photocurrent measurements. Appl Phys Lett. 2003;83:3812.

    Article  CAS  Google Scholar 

  33. Schauer F. Space-charge-limited currents for organic solar cells optimisation. Sol Energy Mater Sol Cells. 2005;87:235–50.

    Article  CAS  Google Scholar 

  34. Babel A, Jenekhe SA. Alkyl chain length dependence of the field-effect carrier mobility in regioregular poly(3-alkylthiophene)s. Synth Met. 2005;148:169.

    Article  CAS  Google Scholar 

  35. Stephen M, Geneviˇcius K, Juška G, Arlauskas K, Hiorns RC. Charge transport and its characterization using photo‐CELIV in bulk heterojunction solar cells. Polym Int. 2017;66:13–25.

    Article  CAS  Google Scholar 

  36. Juška G, Arlauskas K, Viliūnas M, Kočka J. Extraction current transients: new method of study of charge transport in microcrystalline silicon. Phys Rev Lett 2000;84:4946.

    Article  PubMed  Google Scholar 

  37. Melianas A, Kemerink M. Photogenerated charge transport in organic electronic materials: Experiments confirmed by simulations. Adv Mater. 2019;31:1806004.

    Article  Google Scholar 

  38. Ulbricht R, Hendry E, Shan J, Heinz TF, Bonn M. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev Mod Phys. 2011;83:543.

    Article  CAS  Google Scholar 

  39. Devizˇis A, Serbenta A, Meerholz K, Hertel D, Gulbinas V. Ultrafast dynamics of carrier mobility in a conjugated polymer probed at molecular and microscopic length scales. Phys Rev Lett. 2009;103:027404.

    Article  PubMed  Google Scholar 

  40. Saeki A. Evaluation-oriented exploration of photo energy conversion systems: from fundamental optoelectronics and material screening to the combination with data science. Polym J. 2020;52:1307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Saeki A, Seki S, Koizumi Y, Tagawa S. Dynamics of photogenerated charge carrier and morphology dependence in polythiophene films studied by in situ time-resolved microwave conductivity and transient absorption spectroscopy. J Photochemistry Photobiol A: Chem. 2007;186:158–65.

    Article  CAS  Google Scholar 

  42. Lane PA, Cunningham PD, Melinger JS, Esenturk O, Heilweil EJ. Hot photocarrier dynamics in organic solar cells. Nat Commun. 2015;6:7558.

    Article  CAS  PubMed  Google Scholar 

  43. Hamada F, Saeki A. Mobility relaxation of holes and electrons in polymer:fullerene and polymer: non-fullerene acceptor solar cells. ChemSusChem. 2021;14:3528.

    Article  CAS  PubMed  Google Scholar 

  44. Shimata Y, Saeki A. Hole relaxation in polymer: fullerene solar cells examined by the simultaneous measurement of time-of-flight and time-resolved microwave conductivity. J Phys Chem C. 2017;121:18351.

    Article  CAS  Google Scholar 

  45. Li S, Hamada F, Nishikubo R, Saeki A. Quantifying the optimal thickness in polymer:fullerene solar cells from the analysis of charge transport dynamics and photoabsorption. Sustain Energy Fuels. 2022;6:756–65.

    Article  CAS  Google Scholar 

  46. Lin Y, Wang J, Zhang Z-G, Bai H, Li Y, Zhu D, et al. An electron acceptor challenging fullerene for efficient polymer solar cells. Adv Mater. 2015;27:1170–4.

    Article  CAS  PubMed  Google Scholar 

  47. Yang Y, Zhang Z-G, Bin H, Chen S, Gao L, Xue L, et al. Side-chain isomerization on an n-type organic semiconductor ITIC acceptor makes 11.77% high efficiency polymer solar cells. J Am Chem Soc. 2016;138:15011–8.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang Z, Guang S, Yu J, Wang H, Cao J, Du F, et al. Over 15.5% efficiency organic solar cells with triple sidechain engineered ITIC. Sci Bull. 2020;65:1533–6.

    Article  CAS  Google Scholar 

  49. Xie D, Liu T, Gao W, Zhong C, Huo L, Luo Z, et al. A novel thiophene‐fused ending group enabling an excellent small molecule acceptor for high‐performance fullerene‐free polymer solar cells with 11.8% efficiency. Sol RRL. 2017;1:1700044.

    Article  Google Scholar 

  50. Yao H, Ye L, Hou J, Jang B, Han G, Cui Y, et al. Achieving highly efficient nonfullerene organic solar cells with improved intermolecular interaction and open‐circuit voltage. Adv Mater. 2017;29:1700254.

    Article  Google Scholar 

  51. Chao P, Wang H, Mo D, Meng H, Chen W, He F. Synergistic effects of chlorination and a fully two-dimensional side-chain design on molecular energy level modulation toward non-fullerene photovoltaics. J Mater Chem A. 2018;6:2942–51.

    Article  CAS  Google Scholar 

  52. Suman and Singh SP. Impact of end groups on the performance of non-fullerene acceptors for organic solar cell applications. J Mater Chem A. 2019;7:22701–29.

    Article  Google Scholar 

  53. Ma R, Li G, Li D, Liu T, Luo Z, Zhang G, et al. Understanding the effect of end group halogenation in tuning miscibility and morphology of high‐performance small molecular acceptors. Sol RRL. 2020;4:2000250.

    Article  CAS  Google Scholar 

  54. Aldrich TJ, Matta M, Zhu W, Swick SM, Stern CL, Schatz GC, et al. Fluorination effects on indacenodithienothiophene acceptor packing and electronic structure, end-group redistribution, and solar cell photovoltaic response. J Am Chem Soc. 2019;141:3274–87.

    Article  CAS  PubMed  Google Scholar 

  55. Han G, Guo Y, Ning L, Yi Y. Improving the electron mobility of ITIC by end‐group modulation: the role of fluorination and π‐extension. Sol RRL. 2019;3:1800251.

    Article  Google Scholar 

  56. Lai H, Chen H, Shen Y, Wang M, Chao P, Xie W, et al. Using chlorine atoms to fine-tune the intermolecular packing and energy levels of efficient nonfullerene acceptors. ACS Appl Energy Mater. 2019;2:7663–7669.

    Article  CAS  Google Scholar 

  57. Qu J, Li D, Wang H, Zhou J, Zheng N, Lai H, et al. Bromination of the small-molecule acceptor with fixed position for high-performance solar cells. Chem Mater 2019;31:8044–8051.

    Article  CAS  Google Scholar 

  58. Ma X, Wang J, An Q, Gao J, Hu Z, Xu C, et al. Highly efficient quaternary organic photovoltaics by optimizing photogenerated exciton distribution and active layer morphology. Nano Energy. 2020;70:104496.

    Article  CAS  Google Scholar 

  59. Wang Y, Fan Q, Guo X, Li W, Guo B, Su W, et al. High-performance nonfullerene polymer solar cells based on a fluorinated wide bandgap copolymer with a high open-circuit voltage of 1.04 V. J Mater Chem A. 2017;5:22180.

    Article  CAS  Google Scholar 

  60. Mozer AJ, Sariciftci NS. Negative electric field dependence of charge carrier drift mobility in conjugated, semiconducting polymers. Chem Phys Lett 2004;389:438.

    Article  CAS  Google Scholar 

  61. Islam MA. Einstein–Smoluchowski diffusion equation: a discussion. Phys Scr. 2004;70:120–5.

    Article  CAS  Google Scholar 

  62. Rybicki J, Rybicka A, Feliziani S, Chybicki M. The thickness dependence of the hopping time-of-flight current profiles in spatially non-uniform thin dielectric layers. J Phys: Condens Matter. 1996;8:2089.

    CAS  Google Scholar 

  63. Cheon KH, Cho J, Lim BT, Yun H-J, Kwon S-K, Kim Y-H, et al. Analysis of charge transport in high-mobility diketopyrrolopyrole polymers by space charge limited current and time of flight methods. RSC Adv. 2014;4:35344–7.

    Article  CAS  Google Scholar 

  64. Zhang G, Clarke TM, Mozer AJ. Bimolecular recombination in a low bandgap polymer: PCBM blend solar cell with a high dielectric constant. J Phys Chem C. 2016;120:7033–7043.

    Article  CAS  Google Scholar 

  65. Yao C, Zhao J, Zhu Y, Liu B, Yan C, Perepichka DF, et al. Trifluoromethyl group-modified non-fullerene acceptor toward improved power conversion efficiency over 13% in polymer solar cells. ACS Appl Mater Interfaces. 2020;12:11543–50.

    Article  CAS  PubMed  Google Scholar 

  66. Nekrašas N, Genevičius K, Viliūnas M, Juška G. Features of current transients of photogenerated charge carriers, extracted by linearly increased voltage. Chem Phys. 2012;404:56–59.

    Article  Google Scholar 

  67. Li P, Fang J, Wang Y, Manzhos S, Cai L, Song Z, et al. Synergistic effect of dielectric property and energy transfer on charge separation in non‐fullerene‐based solar cells. Angew Chem Int Ed. 2021;60:15054–62.

    Article  CAS  Google Scholar 

  68. Shi M, Wang T, Wu Y, Sun R, Wang W, Guo J, et al. The intrinsic role of molecular mass and polydispersity index in high‐performance non‐fullerene polymer solar cells. Adv Energy Mater 2021;11:2002709.

    Article  CAS  Google Scholar 

  69. Zhang L, Zhao H, Yuan J, Lin B, Xing Z, Meng X, et al. Blade-coated efficient and stable large-area organic solar cells with optimized additive. Org Electron. 2020;83:105771.

    Article  CAS  Google Scholar 

  70. Lu S, Li F, Zhang K, Zhu J, Cui W, Yang R, et al. Halogenation on terminal groups of ITIC based electron acceptors as an effective strategy for efficient polymer solar cells. Sol Energy. 2020;195:429–35.

    Article  CAS  Google Scholar 

  71. Benatto L, Bassi M, de., Menezes LCW, de, Roman LS, Koehler M. Kinetic model for photoluminescence quenching by selective excitation of D/A blends: implications for charge separation in fullerene and non-fullerene organic solar cells. J Mater Chem C. 2020;8:8755.

    Article  CAS  Google Scholar 

  72. Jamieson FC, Domingo EB, McCarthy-Ward T, Heeney M, Stingelin N, Durrant JR. Fullerene crystallisation as a key driver of charge separation in polymer/fullerene bulk heterojunction solar cells. Chem Sci. 2012;3:485–92.

    Article  CAS  Google Scholar 

  73. Jiang X, Xu Y, Wang X, Wu Y, Feng G, Li C, et al. Non-fullerene organic solar cells based on diketopyrrolopyrrole polymers as electron donors and ITIC as an electron acceptor. Phys Chem Chem Phys. 2017;19:8069–75.

    Article  CAS  PubMed  Google Scholar 

  74. Kim J, Godin R, Dimitrov SD, Du T, Bryant D, McLachlan MA, et al. Excitation density dependent photoluminescence quenching and charge transfer efficiencies in hybrid perovskite/organic semiconductor bilayers. Adv Energy Mater. 2018;8:1802474.

    Article  Google Scholar 

  75. Ha SK, Shcherbakov-Wu W, Powers ER, Paritmongkol W, Tisdale WA. Power-dependent photoluminescence efficiency in manganese-doped 2D hybrid perovskite nanoplatelets. ACS Nano. 2021;15:20527–20538.

    Article  CAS  PubMed  Google Scholar 

  76. De CK, Mandal S, Roy D, Ghosh S, Konar A, Mandal PK. Ultrafast dynamics and ultrasensitive single-particle intermittency in small-sized toxic metal free InP-based core/alloy-shell/shell quantum dots: excitation wavelength dependency toward variation of PLQY. J Phys Chem C. 2019;123:28502–28510.

    Article  CAS  Google Scholar 

  77. Anantharaman SB, Stöferle T, Nüesch FA, Mahrt RF, Heier J. Exciton dynamics and effects of structural order in morphology‐controlled J‐aggregate assemblies. Adv Funct Mater. 2019;29:1806997.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant-in-Aid for Transformative Research Areas (A) “Dynamic Exciton” (Grant No. 20H05832, JP20H05836, JP20H05840 (H.I.), JP20H05841 (H.I.)) and Grant-in-Aid for Scientific Research (A) (Grant No. A20H00398) and Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST) (Grant No. JPMJCR2107). We thank Fumiya Hamada for his support with the experiments. We thank Dr. Fumitaka Ishiwari at Osaka University for fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akinori Saeki.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Nishikubo, R., Wada, T. et al. Unraveling complex performance-limiting factors of brominated ITIC derivative: PM6 organic solar cells by using time-resolved measurements. Polym J 55, 463–476 (2023). https://doi.org/10.1038/s41428-022-00704-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00704-1

Search

Quick links