Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Roles of amorphous and crystalline regions in determining the optical and electronic properties of donor:acceptor systems comprising poly(3-hexylthiophene) embedded with nitrogen/sulfur-doped graphene quantum dots

Abstract

Herein, we present a joint experimental and theoretical study using a multiscale computational simulation approach focusing on the roles of amorphous and crystalline regions in determining the optical and electronic properties of hybrid systems comprising poly(3-hexylthiophene) (P3HT) embedded with nitrogen- (N-GQDs) and nitrogen/sulfur-doped graphene quantum dots (NS-GQDs). The degree of crystallinity calculated with our experimental X-ray diffraction patterns is supported by our molecular dynamics calculations for the amorphous and crystalline models. Resonance and off-resonance Raman, UV‒Vis and impedance spectroscopy allowed us to demonstrate the enhancement in electronic charge transfer for both the amorphous and crystalline regions, particularly in the case of the P3HT:NS-GQDs. Our DFT calculations corroborate the presence of donor:acceptor interactions for the P3HT:NS-GQDs, while the opposite was observed for the P3HT:N-GQDs, in strong correlation with experimental data. Enhancing the knowledge of these fundamental aspects can be very useful for understanding the role of GQDs in polymeric solar cells and contributes to guiding their more rational design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science. 1995;270:1789–91.

    Article  CAS  Google Scholar 

  2. Cheng YJ, Yang SH, Hsu CS. Synthesis of conjugated polymers for organic solar cell applications. Chem Rev. 2009;109:5868–923.

    Article  CAS  PubMed  Google Scholar 

  3. Dang MT, Hirsch L, Wantz G. P3HT:PCBM, best seller in polymer photovoltaic research. Adv Mater. 2011;23:3597–602.

    Article  CAS  PubMed  Google Scholar 

  4. Ma W, Yang C, Gong X, Lee K, Heeger AJ. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater. 2005;15:1617–22.

    Article  CAS  Google Scholar 

  5. Baek WH, Yang H, Yoon TS, Kang CJ, Lee HH, Kim YS. Effect of P3HT:PCBM concentration in solvent on performances of organic solar cells. Sol Energy Mater Sol Cells. 2009;93:1263–7.

    Article  CAS  Google Scholar 

  6. He Y, Li Y. Fullerene derivative acceptors for high-performance polymer solar cells. Phys Chem Chem Phys. 2011;13:1970–83.

    Article  CAS  PubMed  Google Scholar 

  7. Chi D, Qu S, Wang Z, Wang J. High efficiency P3HT:PCBM solar cells with an inserted PCBM layer. J Mater Chem C. 2014;2:4383–7.

    Article  CAS  Google Scholar 

  8. Holliday S, Ashraf RS, Wadsworth A, Baran D, Yousaf SA, Nielsen CB. et al. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nat Commun.2016;7:11585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Trauzettel B, Bulaev DV, Loss D, Burkard G. Spin qubits in graphene quantum dots. Nat Phys. 2007;3:192–6.

    Article  CAS  Google Scholar 

  10. Gerardot BD, Brunner D, Dalgarno PA, Öhberg P, Seidi S, Kroner M, et al. Optical pumping of a single hole spin in a quantum dot. Nature. 2008;451:441–4.

    Article  CAS  PubMed  Google Scholar 

  11. Ritter KA, Lyding JW. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat Mater. 2009;8:235–42.

    Article  CAS  PubMed  Google Scholar 

  12. Gan X, Shiue RJ, Gao Y, Meric I, Heinz TF, Shepard K, et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat Photon 2013;7:883–7.

    Article  CAS  Google Scholar 

  13. Li Y, Hu Y, Zhao Y, Shi G, Deng L, Hou Y, et al. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv Mater. 2011;23:776–80.

    Article  PubMed  Google Scholar 

  14. Gupta V, Chaudhary N, Srivastava R, Sharma GD, Bhardwaj R, Chand S. Luminscent graphene quantum dots for organic photovoltaic devices. J Am Chem Soc. 2011;133:9960–3.

    Article  CAS  PubMed  Google Scholar 

  15. Routh P, Das S, Shit A, Bairi P, Das P, Nandi AK. Graphene quantum dots from a facile sono-fenton reaction and its hybrid with a polythiophene graft copolymer toward photovoltaic application. ACS Appl Mater Interfaces. 2013;5:12672–80.

    Article  CAS  PubMed  Google Scholar 

  16. Novak TG, Kim J, Song SH, Jun GH, Kim H, Jeong MS, et al. Fast P3HT exciton dissociation and absorption enhancement of organic solar cells by PEG-functionalized graphene quantum dots. Small. 2016;12:994–9.

    Article  CAS  PubMed  Google Scholar 

  17. Cui B, Yan L, Gu H, Yang Y, Liu X, Ma CQ, et al. Fluorescent carbon quantum dots synthesized by chemical vapor deposition: an alternative candidate for electron acceptor in polymer solar cells. Opt Mater. 2018;75:166–73.

    Article  CAS  Google Scholar 

  18. Gebreegziabher GG, Asemahegne AS, Ayele DW, Mani D, Narzary R, Sahu PP, et al. Polyaniline–graphene quantum dots (PANI–GQDs) hybrid for plastic solar cell. Carbon Lett. 2020;30:1–11.

    Article  Google Scholar 

  19. Li F, Kou L, Chen W, Wu C, Guo T. Enhancing the short-circuit current and power conversion efficiency of polymer solar cells with graphene quantum dots derived from double-walled carbon nanotubes. NPG Asia Mater. 2013;5:e60.

    Article  CAS  Google Scholar 

  20. Wu W, Zhang J, Shen W, Zhong M, Guo S. Graphene quantum dots band structure tuned by size for efficient organic solar cells. Phys Status Solidi A. 2019;216:1900657.

    Article  CAS  Google Scholar 

  21. Wu W, Wu H, Zhong M, Guo S. Dual role of graphene quantum dots in active layer of inverted bulk heterojunction organic photovoltaic devices. ACS Omega. 2019;4:16159–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mei B, Qin Y, Agbolaghi S. Carbon/graphene quantum dot and conjugated polymer nanostructures impart unprecedented high efficiencies in routine P3HT:PCBM photovoltaics. Sol Energy. 2021;215:77–91.

    Article  CAS  Google Scholar 

  23. Jin SH, Kim DH, Jun GH, Hong SH, Jeon S. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano. 2013;7:1239–45.

    Article  CAS  PubMed  Google Scholar 

  24. Yeh TF, Teng CY, Chen SJ, Teng H. Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination. Adv Mater. 2014;26:3297–303.

    Article  CAS  PubMed  Google Scholar 

  25. Li S, Li Y, Cao J, Zhu J, Fan L, Li X. Sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of Fe3. Anal Chem. 2014;86:10201–7.

    Article  CAS  PubMed  Google Scholar 

  26. Li X, Lau SP, Tang L, Ji R, Yang P. Sulphur doping: a facile approach to tune the electronic structure and optical properties of graphene quantum dots. Nanoscale. 2014;6:5323–8.

    Article  CAS  PubMed  Google Scholar 

  27. Dong Y, Pang H, Yang HB, Guo C, Shao J, Chi Y, et al. Carbon-based dots Co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem Int Ed. 2013;52:7800–4.

    Article  CAS  Google Scholar 

  28. Qu D, Zheng M, Du P, Zhou Y, Zhang L, Li D, et al. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalyst. Nanoscale. 2013;5:12272–7.

    Article  CAS  PubMed  Google Scholar 

  29. Jahan S, Mansoor F, Naz S, Lei J, Kanwal S. Oxidative synthesis of highly fluorescent boron/nitrogen co-doped carbon nanodots enabling detection of photosensitizer and carcinogenic dye. Anal Chem. 2013;85:10232–39.

    Article  CAS  PubMed  Google Scholar 

  30. Bourlinos AB, Trivizas G, Karakassides MA, Baikousi M, Kouloumpis A, Gournis D, et al. Green and simple route toward boron-doped carbon dots with significantly enhanced non-linear optical properties. Carbon. 2015;83:173–9.

    Article  CAS  Google Scholar 

  31. Hmar JJL, Majumder T, Dhar S, Mondal SP. Sulfur and nitrogen co-doped graphene quantum dot decorated ZnO nanorod/polymer hybrid flexible device for photosensing applications. Thin Solid Films. 2016;612:274–83.

    Article  CAS  Google Scholar 

  32. Ho NT, Tam TV, Tien HN, Jang SJ, Nguyen TK, Choi WM, et al. Solution-processed transparent intermediate layer for organic tandem solar cell using nitrogen-doped graphene quantum dots. J Nanosci Nanotechnol. 2017;17:5686–92.

    Article  CAS  Google Scholar 

  33. Sung SJ, Kim JH, Gihm SH, Park J, Cho YS, Yang SJ, et al. Revisiting the role of graphene quantum dots in ternary organic solar cells: insights into the nanostructure reconstruction and effective förster resonance energy transfer. ACS Appl Energy Mater. 2019;2:8826–35.

    Article  CAS  Google Scholar 

  34. Kurukavak ÇK, Yılmaz T, Çetin S, Alqadasi MM, Al-Khawlany KM, Kus M. Synthesis of boron-doped CQDs and its use as an additive in P3HT:PCBM layer for efficiency improvement of organic solar cell. Microelectron Eng. 2021;235:111465.

    Article  Google Scholar 

  35. Sivula K, Luscombe CK, Thompson BC, Frechet JMJ. Enhancing the thermal stability of polythiophene: fullerene solar cells by decreasing effective polymer regioregularity. J Am Chem . 2006;128:13988–9.

    Article  CAS  Google Scholar 

  36. Woo CH, Thompson BC, Kim BJ, Toney MF, Frechet JMJ. The influence of Poly(3-hexylthiophene) regioregularity on fullerene-composite solar cell performance. J Am Chem Soc. 2008;130:16324–9.

    Article  CAS  PubMed  Google Scholar 

  37. Mladenovic M, Vukmirovic N. Effects of thermal disorder on the electronic properties of ordered polymers. Phys Chem Chem Phys. 2014;16:25950–8.

    Article  CAS  PubMed  Google Scholar 

  38. Toman P, Mensík M, Bartkowiak W, Pfleger J. Modelling of the charge carrier mobility in disordered linear polymer materials. Phys Chem Chem Phys. 2017;19:7760.

    Article  CAS  PubMed  Google Scholar 

  39. Poelking C, Daoulas K, Troisi A, Andrienko D. Morphology and charge transport in P3HT: a theorist’s perspective, in P3HT revisited—from molecular scale to solar cell devices, ed. S Ludwigs, Advances in polymer science; Springer: Berlin, Heidelberg, 2014.

  40. McMahon DP, Cheung DL, Goris L, Dacuna J, Salleo A, Troisi A. Relation between microstructure and charge transport in polymers of different regioregularity. J Phys Chem C. 2011;115:19386–93.

    Article  CAS  Google Scholar 

  41. Vukmirovic N, Wang LW. Density of states and wave function localization in disordered conjugated polymers: a large scale computational study. J Phys Chem B. 2011;115:1792–7.

    Article  CAS  PubMed  Google Scholar 

  42. Wolf CM, Kanekal KH, Yimer YY, Tyagi M, Omar-Diallo S, Pakhnyuk V, et al. Assessment of molecular dynamics simulations for amorphous poly(3-hexylthiophene) using neutron and X-ray scattering experiments. Soft Matter. 2019;15:5067–83.

    Article  CAS  PubMed  Google Scholar 

  43. Liu T, Troisi A. What makes fullerene acceptors special as electron acceptors in organic solar cells and how to replace them. Adv Mater. 2013;25:1038–41.

    Article  CAS  PubMed  Google Scholar 

  44. Mombrú D, Romero M, Faccio R, Mombrú AW. Curvature and vacancies in graphene quantum dots. Appl Surf Sci. 2018;462:540–8.

    Article  Google Scholar 

  45. Cui P. Effect of boron and nitrogen doping on carrier relaxation dynamics of graphene quantum dots. Mater Res Express. 2018;5:065034.

    Article  Google Scholar 

  46. Mombrú D, Romero M, Faccio R, Mombrú AW. Electronic and optical properties of sulfur and nitrogen doped graphene quantum dots: a theoretical study. Phys E: Low-Dimens Syst Nanostruct. 2019;113:130–6.

    Article  Google Scholar 

  47. Lee CK, Pao CW, Chu CW. Multiscale molecular simulations of the nanoscale morphologies of P3HT:PCBM blends for bulk heterojunction organic photovoltaic cells. Energy Environ Sci. 2011;4:4124.

    Article  CAS  Google Scholar 

  48. Lee CK, Pao CW. Nanomorphology evolution of P3HT/PCBM blends during solution-processing from coarse-grained molecular simulations. J Phys Chem C. 2014;118:11224–33.

    Article  CAS  Google Scholar 

  49. Guilbert AAY, Zbiri M, Dunbar ADF, Nelson J. Quantitative analysis of the molecular dynamics of P3HT:PCBM bulk heterojunction. J Phys Chem B. 2017;121:9073–80.

    Article  CAS  PubMed  Google Scholar 

  50. D’Avino G, Mothy S, Muccioli L, Zannoni C, Wang L, Cornil J, et al. Energetics of electron–hole separation at P3HT/PCBM heterojunctions. J Phys Chem C. 2013;117:12981–90.

    Article  Google Scholar 

  51. Pishehvarz G, Erfan-Niya H, Zaminpayma E. The role of hydrogen bonding in interaction energy at the interface of conductive polymers and modified graphene-based nanosheets: a reactive molecular dynamics study. Comput Mater Sci. 2018;155:499–523.

    Article  CAS  Google Scholar 

  52. Mombrú D, Romero M, Faccio R, Mombrú. AW. Electronic structure of edge-modified graphene quantum dots interacting with polyaniline: vibrational and optical properties. J Phys Chem C. 2017;121:16576–83.

    Article  Google Scholar 

  53. Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964;136:B864–B871.

    Article  Google Scholar 

  54. Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev. 1965;140:A1133–8.

    Article  Google Scholar 

  55. Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 1996;6:15–50.

    Article  CAS  Google Scholar 

  56. Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B. 1993;47:558–61.

    Article  CAS  Google Scholar 

  57. Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys Rev B. 1994;49:14251–69.

    Article  CAS  Google Scholar 

  58. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented wave method. Phys Rev B. 1999;59:1758–75.

    Article  CAS  Google Scholar 

  59. Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50:17953–79.

    Article  Google Scholar 

  60. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–8.

    Article  CAS  PubMed  Google Scholar 

  61. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1997;78:1396–1396.

    Article  CAS  Google Scholar 

  62. Kayunkid N, Uttiya S, Brinkmann M. Structural model of regioregular poly(3-hexylthiophene) obtained by electron diffraction analysis. Macromolecules. 2010;43:4961–7.

    Article  CAS  Google Scholar 

  63. Mombrú D, Romero M, Faccio R, Mombrú AW. Unraveling the lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) doping mechanism of regioregular poly(3-hexylthiophene): experimental and theoretical study. J Phys Chem C. 2020;124:7061–70.

    Article  Google Scholar 

  64. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19.

    Article  CAS  Google Scholar 

  65. Lu L, Zhu Y, Shi C, Pei YT. Large-scale synthesis of defect-selective graphene quantum dots by ultrasonic-assisted liquid-phase exfoliation. Carbon. 2016;109:373–83.

    Article  CAS  Google Scholar 

  66. Sun X, Li HJ, Ou N, Lyu B, Gui B, Tian S, et al. Visible-light driven TiO2 photocatalyst coated with graphene quantum dots of tunable nitrogen doping. Molecules. 2019;24:344.

  67. Li HJ, Sun X, Xue FF, Ou N, Sun BW, Qian DJ, et al. Redox induced fluorescence on–off switching based on nitrogen enriched graphene quantum dots for formaldehyde detection and bioimaging. ACS Sustain Chem Eng. 2017;6:1708–16.

    Article  Google Scholar 

  68. Mombrú D, Romero M, Faccio R, Mombrú AW. Tuning electrical transport mechanism of polyaniline–graphene oxide quantum dots nanocomposites for potential electronic device applications. J Phys Chem C. 2016;120:25117–23.

    Article  Google Scholar 

  69. Kim S, Shin DH, Kim CO, Kang SS, Joo SS, Choi SH, et al. Size-dependence of Raman scattering from graphene quantum dots: Interplay between shape and thickness. Appl Phys Lett. 2013;102:053108.

    Article  Google Scholar 

  70. Chu CW, Yang H, Hou WJ, Huang J, Li G, Yang Y. Control of the nanoscale crystallinity and phase separation in polymer solar cells. Appl Phys Lett. 2008;92:103306.

    Article  Google Scholar 

  71. Qu S, Yao Q, Wang L, Chen Z, Xu K, Zeng H, et al. Highly anisotropic P3HT films with enhanced thermoelectric performance via organic small molecule epitaxy. NPG Asia Mater. 2016;8:e292.

    Article  CAS  Google Scholar 

  72. Kim Y, Cook S, Tuladhar SM, Choulis SA, Nelson J, Durrant JR, et al. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells. Nat Mater. 2006;5:197–203.

    Article  CAS  Google Scholar 

  73. Brinkmann MJ. Structure and morphology control in thin films of regioregular poly(3-hexylthiophene). Polym Sci, Part B: Polym Phys. 2011;49:1218–33.

    Article  CAS  Google Scholar 

  74. Singh RK, Kumar J, Singh R, Kant R, Rastogi RC, Chand S, et al. Structure–conductivity correlation in ferric chloride-doped poly(3-hexylthiophene). N J Phys. 2006;8:112–112.

    Article  Google Scholar 

  75. Rahimi K, Botiz I, Agumba JO, Motamen S, Stingelin N, Reiter G. Light absorption of poly(3-hexylthiophene) single crystals. RSC Adv. 2014;4:11121.

    Article  CAS  Google Scholar 

  76. Scharsich C, Lohwasser RH, Sommer M, Asawapirom U, Scherf U, Thelakkat M, et al. Control of aggregate formation in poly(3-hexylthiophene) by solvent, molecular weight, and synthetic method. J Polym Sci B Polym Phys. 2012;50:442–53.

    Article  CAS  Google Scholar 

  77. Liang Z, Reese MO, Gregg BA. Chemically treating poly(3-hexylthiophene) defects to improve bulk heterojunction photovoltaics. ACS Appl Mater Interfaces. 2011;3:2042–50.

    Article  CAS  PubMed  Google Scholar 

  78. Clark J, Silva C, Friend RH, Spano FC. Role of intermolecular coupling in the photophysics of disordered organic semiconductors: aggregate emission in regioregular polythiophene. Phys Rev Lett. 2007;98:206406.

    Article  PubMed  Google Scholar 

  79. Tsoi WC, James DT, Kim JS, Nicholson PG, Murphy CE, Bradley DDC, et al. The nature of in-plane skeleton Raman modes of P3HT and their correlation to the degree of molecular order in P3HT:PCBM blend thin films. J Am Chem Soc. 2011;133:9834–43.

    Article  CAS  PubMed  Google Scholar 

  80. Nightingale J, Wade J, Moia D, Nelson J, Kim JS. Impact of molecular order on polaron formation in conjugated polymers. J Phys Chem C. 2018;122:29129–40.

    Article  CAS  Google Scholar 

  81. Chi D, Qu S, Wang Z, Wang J. High-efficiency P3HT:PCBM solar cells with an inserted PCBM layer. J Mater Chem C. 2014;2:4383.

    Article  CAS  Google Scholar 

  82. Chiguvare Z, Parisi J. Current conduction in poly(3-Hexylthiophene) and in poly(3- hexylthiophene) doped [6,6]-phenyl C61-butyric acid methylester composite thin film devices. Z Naturforsch. 2012;67a:589–600.

    Article  Google Scholar 

  83. Omer B, Merazga A. On the applicability of Schottky diffusion theory to non-ohmic cathode contact P3HT:PCBM bulk-hetero junction solar cell. AIP Adv. 2021;11:025140.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Uruguayan CSIC, ANII and PEDECIBA funding institutions. We would particularly like to thank Uruguayan institution CSIC “Iniciación a la investigación” ID 538 project for financial support and Laboratorio de Biotecnología at IPTP/Facultad de Química (UdelaR) for the use of the Ultrospec 3100 Pro spectrophotometer.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mariano Romero, Ricardo Faccio or Álvaro W. Mombrú.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mombrú, D., Romero, M., Faccio, R. et al. Roles of amorphous and crystalline regions in determining the optical and electronic properties of donor:acceptor systems comprising poly(3-hexylthiophene) embedded with nitrogen/sulfur-doped graphene quantum dots. Polym J 54, 1465–1476 (2022). https://doi.org/10.1038/s41428-022-00694-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00694-0

Search

Quick links