Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Additive effects of lithium halides on the tensile and rheological properties of poly(methyl methacrylate)

Abstract

Lithium halides are easily dispersed in poly(methyl methacrylate) (PMMA) and lead to strong physical crosslinking with PMMA. We investigated the additional effects of various lithium halides, such as LiCl, LiBr, and LiI salts, on the rheological and mechanical properties of PMMA. The salts were homogeneously dispersed in the PMMA matrix, and the flow zone expanded owing to the pinning effects of the molten PMMA chains as the anion size increased. Furthermore, the brittleness of the PMMA solids doped with LiX (X = Cl, Br, and I) was analyzed using the Griffith theory, which suggested that the stress concentration around the salts in the PMMA matrix leads to the initiation of macroscopic fractures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Watanabe M, Itoh M, Sanui K, Ogata N. Carrier transport and generation processes in polymer electrolytes based on poly(ethylene oxide) networks. Macromolecules. 1987;20:569–73.

    Article  CAS  Google Scholar 

  2. Yang Y, Zhang J, Zhou C, Wu S, Xu S, Liu W, et al. Effect of lithium iodide addition on polyethylene oxide-poly(vinylidene fluoride) polymer-blend electrolyte for dye-sensitized nanocrystalline solar cell. J Phys Chem B. 2008;112:6594–602.

    Article  CAS  Google Scholar 

  3. Zhang LZ, Wang YY, Wang CL, Xiang H. Synthesis and characterization of a PVA/LiCl blend membrane for air dehumidification. J Membr Sci. 2008;308:198–206.

    Article  CAS  Google Scholar 

  4. Idris A, Ahmed I, Limin MA. Influence of lithium chloride, lithium bromide and lithium fluoride additives on performance of polyethersulfone membranes and its application in the treatment of palm oil mill effluent. Desalination. 2010;250:805–9.

    Article  CAS  Google Scholar 

  5. Jiang X, Li H, Luo Y, Zhao Y, Hou L. Studies of the plasticizing effect of different hydrophilic inorganic salts on starch/poly (vinyl alcohol) films. Int J Biol Macromol. 2016;82:223–30.

    Article  CAS  Google Scholar 

  6. Saari RA, Maeno R, Tsuyuguchi R, Marujiwat W, Phulkerd P, Yamaguchi M. Impact of Lithium halides on rheological properties of aqueous solution of poly(vinyl alcohol). J Polym Res. 2020;27:218.

  7. Bianchi E, Ciferri A, Tealdi A, Torre R, Valenti B. Bulk properties of synthetic polymer/inorganic salt systems. II. Crystallization kinetics of salted polycaproamide. 1974;7:495–500.

  8. Xu Y, Sun W, Li W, Hu X, Zhou H, Weng S. Investigation on the Interaction between polyamide and lithium salts. Polymer. 1999;77:2685–90.

  9. Wu Y, Xu Y, Wang D, Zhao Y, Weng S, Xu D, et al. FT-IR spectroscopic investigation on the interaction between nylon 66 and lithium salts. J Appl Polym Sci 2004;91:2869–75.

    Article  CAS  Google Scholar 

  10. Hofmeister F. Zur Lehre von der Wirkung der Salze -. Zweite Mittheilung. Arch Exp Pathol und Pharmakologie. 1888;24:247–60.

    Google Scholar 

  11. Saari RA, Nasri MS, Marujiwat W, Maeno R, Yamaguchi M. Application of the Hofmeister series to the structure and properties of poly(vinyl alcohol) films containing metal salts. Polym J 2021;53:557–64.

    Article  CAS  Google Scholar 

  12. Sato Y, Ito A, Maeda S, Yamaguchi M. Structure and optical properties of transparent polyamide 6 containing lithium bromide. J Polym Sci Part B Polym Phys 2018;56:1513–20.

    Article  CAS  Google Scholar 

  13. Miyagawa A, Ayerdurai V, Nobukawa S, Yamaguchi M. Viscoelastic properties of poly(methyl methacrylate) with high glass transition temperature by lithium salt addition. J Polym Sci Part B Polym Phys 2016;54:2388–94.

    Article  CAS  Google Scholar 

  14. Ito A, Phulkerd P, Ayerdurai V, Soga M, Courtoux A, Miyagawa A, et al. Enhancement of the glass transition temperature of poly(methyl methacrylate) by salt. Polym J 2018;50:857–63.

    Article  CAS  Google Scholar 

  15. Ito A, Maeno R, Yamaguchi M. Control of optical and mechanical properties of poly(methyl methacrylate) by introducing lithium salt. Opt Mater. 2018;83:152–6.

    Article  CAS  Google Scholar 

  16. Ito A, Shin A, Nitta K. Rheological and mechanical properties of poly(methyl methacrylate) doped with lithium salts. Polym J. 2022;54:41–6.

  17. Ito A, Nitta KH. Rheological and mechanical properties of poly(methyl methacrylate) associated with lithium salts. Nihon Reoroji Gakkaishi. 2022;50:87–93.

    Article  CAS  Google Scholar 

  18. Ito A, Nitta KH. Additive effects of lithium salts with various anionic species in poly (Methyl methacrylate). Molecules. 2021;26:4096.

  19. Custelcean R, Moyer BA. Anion separation with metal-organic frameworks. Eur J Inorg Chem. 2007;1321–40. https://doi.org/10.1002/ejic.200700018.

  20. Griffith AA. The phenomena of rupture and flow in solids. Philosophical Transactions of the royal society A. 1921;221:163–198.

  21. Griffits AA. Fracture mechanics of polymers. Polym Eng Sci. 1977;17:144.

    Article  Google Scholar 

  22. Saito Y, Yamamoto H, Nakamura O, Kageyama H, Ishikawa H, Miyoshi T, et al. Determination of ionic self-diffusion coefficients of lithium electrolytes using the pulsed field gradient NMR. J Power Sources. 1999;81–82:772–6.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. H. Uchida, Institute of Science and Engineering, Kanazawa University, for experimental support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asae Ito.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ito, A., Shin, A. & Nitta, Kh. Additive effects of lithium halides on the tensile and rheological properties of poly(methyl methacrylate). Polym J 54, 1279–1285 (2022). https://doi.org/10.1038/s41428-022-00691-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00691-3

Search

Quick links