Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Controlled assemblies of conjugated polymers in metal−organic frameworks

Abstract

Owing to their diverse physicochemical functions, conjugated polymers play a vital role in modern life and technology. One of the most important factors affecting the properties of conjugated polymers is their assembly structures. However, the rational design and control of polymer assemblies have yet to be optimized. In this focused review, strategies for regulating the assemblies of conjugated polymers at the molecular level using metal–organic frameworks (MOFs) are discussed. This methodology enables the elicitation of the unexplored properties of conjugated polymers as well as the fabrication of synergistic electronic nanohybrid materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Joachim C, Gimzewski JK, Aviram A. Electronics using hybrid-molecular and mono-molecular devices. Nature. 2000;408:541–8.

    Article  CAS  PubMed  Google Scholar 

  2. Aviram A, Ratner MA. Molecular rectifiers. Chem Phys Lett. 1974;29:277–83.

    Article  CAS  Google Scholar 

  3. Okawa Y, Aono M. Nanoscale control of chain polymerization. Nature. 2001;409:683–4.

    Article  CAS  PubMed  Google Scholar 

  4. Fazzi D, Caironi M. Multi-length-scale relationships between the polymer molecular structure and charge transport: the case of poly-naphthalene diimide bithiophene. Phys Chem Chem Phys. 2015;17:8573–90.

    Article  CAS  PubMed  Google Scholar 

  5. Pan C, Zhao C, Takeuchi M, Sugiyasu K. Conjugated oligomers and polymers sheathed with designer side chains. Chem Asian J. 2015;10:1820–35.

    Article  CAS  PubMed  Google Scholar 

  6. Sozzani P, Comotti A, Bracco S, Simonutti RA. Family of supramolecular frameworks of polyconjugated molecules hosted in aromatic nanochannels. Angew Chem Int Ed. 2004;43:2792–7.

    Article  CAS  Google Scholar 

  7. Wu CG, Bein T. Conducting polyaniline filaments in a mesoporous channel host. Science. 1994;264:1757–9.

    Article  CAS  PubMed  Google Scholar 

  8. Cardin DJ. Encapsulated conducting polymers. Adv Mater. 2002;14:553–63.

    Article  CAS  Google Scholar 

  9. Terao J, Wadahama A, Matono A, Tada T, Watanabe S, Seki S, et al. Design principle for increasing charge mobility of π-conjugated polymers using regularly localized molecular orbitals. Nat Commun. 2013;4:1691.

    Article  PubMed  CAS  Google Scholar 

  10. Kubo Y, Kitada Y, Wakabayashi R, Kishida T, Ayabe M, Kaneko K, et al. A supramolecular bundling approach toward the alignment of conjugated polymers. Angew Chem Int Ed. 2006;45:1548–53.

    Article  CAS  Google Scholar 

  11. Tajima K, Aida T. Controlled polymerizations with constrained geometries. Chem Commun. 2000:2399–412.

  12. Sakaguchi H, Matsumura H, Gong H. Electrochemical epitaxial polymerization of single-molecular wires. Nat Mater. 2004;3:551–7.

    Article  CAS  PubMed  Google Scholar 

  13. Shibasaki Y, Nakamura M, Ishimaru R, Kondo JN, Domen K, Ueda M. Regiocontrolled oxidative coupling polycondensation of 2,5-dimethylphenol induced by mesoporous interior. Macromolecules. 2004;37:9657–9.

    Article  CAS  Google Scholar 

  14. Kitagawa S, Kitaura R, Noro S. Functional porous coordination polymers. Angew Chem Int Ed. 2004;43:2334–75.

    Article  CAS  Google Scholar 

  15. Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J. Reticular synthesis and the design of new materials. Nature. 2003;423:705–14.

    Article  CAS  PubMed  Google Scholar 

  16. Férey G. Hybrid porous solids: past, present, future. Chem Soc Rev. 2008;37:191–214.

    Article  PubMed  Google Scholar 

  17. Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT. Metal-organic framework materials as catalysts. Chem Soc Rev. 2009;38:1450–9.

    Article  CAS  PubMed  Google Scholar 

  18. He C, Liu D, Lin W. Nanomedicine applications of hybrid nanomaterials built from metal–ligand coordination bonds: nanoscale metal–organic frameworks and nanoscale coordination polymers. Chem Rev. 2015;115:11079–108.

    Article  CAS  PubMed  Google Scholar 

  19. Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, et al. Carbon dioxide capture in metal-organic frameworks. Chem Rev. 2012;112:724–81.

    Article  CAS  PubMed  Google Scholar 

  20. Ogiwara N, Kobayashi H, Inukai M, Nishiyama Y, Concepción P, Rey F, et al. Ligand-functionalization-controlled activity of metal–organic framework-encapsulated Pt nanocatalyst toward activation of water. Nano Lett. 2020;20:426–32.

    Article  CAS  PubMed  Google Scholar 

  21. Kitaura R, Kitagawa S, Kubota Y, Kobayashi TC, Kindo K, Mita Y, et al. Formation of a one-dimensional array of oxygen in a microporous metal-organic solid. Science 2002;298:2358–61.

    Article  CAS  PubMed  Google Scholar 

  22. Ishiwata T, Furukawa Y, Sugikawa K, Kokado K, Sada K. Transformation of metal–organic framework to polymer gel by cross-linking the organic ligands preorganized in metal–organic framework. J Am Chem Soc. 2013;135:5427–32.

    Article  CAS  PubMed  Google Scholar 

  23. Kitao T, Zhang Y, Kitagawa S, Wang B, Uemura T. Hybridization of MOFs and polymers. Chem Soc Rev. 2017;46:3108–33.

    Article  CAS  PubMed  Google Scholar 

  24. Denny MS, Moreton JC, Benz L, Cohen SM. Metal–organic frameworks for membrane-based separations. Nat Rev Mater. 2016;1:16078.

    Article  CAS  Google Scholar 

  25. Schmidt BVKJ. Metal-organic frameworks in polymer science: polymerization catalysis, polymerization environment, and hybrid materials. Macromol Rapid Commun. 2020;41:1900333.

    Article  CAS  Google Scholar 

  26. Begum S, Hassan Z, Bräse S, Tsotsalas M. Polymerization in MOF-confined nanospaces: tailored architectures, functions, and applications. Langmuir 2020;36:10657–73.

    Article  CAS  PubMed  Google Scholar 

  27. Uemura T, Kitagawa K, Horike S, Kawamura T, Kitagawa S, Mizuno M, et al. Radical polymerisation of styrene in porous coordination polymers. Chem Commun. 2005:5968–70.

  28. Uemura T, Ono Y, Kitagawa K, Kitagawa S. Radical polymerization of vinyl monomers in porous coordination polymers: nanochannel size effects on reactivity, molecular weight, and stereostructure. Macromolecules. 2008;41:87–94.

    Article  CAS  Google Scholar 

  29. Uemura T, Nakanishi R, Mochizuki S, Murata Y, Kitagawa S. Radical polymerization of 2, 3-dimethyl-1, 3-butadiene in coordination nanochannels. Chem Commun. 2015;51:9892–5.

    Article  CAS  Google Scholar 

  30. Zhang X, Kitao T, Piga D, Hongu R, Bracco S, Comotti A, et al. Carbonization of single polyacrylonitrile chains in coordination nanospaces. Chem Sci. 2020;11:10844–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Uemura T, Hiramatsu D, Kubota Y, Takata M, Kitagawa S. Topotactic linear radical polymerization of divinylbenzenes in porous coordination polymers. Angew Chem. 2007;119:5075–8.

    Article  Google Scholar 

  32. Uemura T, Ono Y, Hijikata Y, Kitagawa S. Functionalization of coordination nanochannels for controlling tacticity in radical vinyl polymerization. J Am Chem Soc. 2010;132:4917–24.

    Article  CAS  PubMed  Google Scholar 

  33. Distefano G, Suzuki H, Tsujimoto M, Isoda S, Bracco S, Comotti A, et al. Highly ordered alignment of a vinyl polymer by host–guest cross-polymerization. Nat Chem. 2013;5:335–41.

    Article  CAS  PubMed  Google Scholar 

  34. Mochizuki S, Ogiwara N, Takayanagi M, Nagaoka M, Kitagawa S, Uemura T. Sequence-regulated copolymerization based on periodic covalent positioning of monomers along one-dimensional nanochannels. Nat Commun. 2018;9:329.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. MacLean MWA, Kitao T, Suga T, Mizuno M, Seki S, Uemura T, et al. Unraveling Inter‐and Intrachain Electronics in Polythiophene Assemblies Mediated by Coordination Nanospaces. Angew Chem Int Ed. 2016;55:708–13.

    Article  CAS  Google Scholar 

  36. Yanai N, Uemura T, Ohba M, Kadowaki Y, Maesato M, Takenaka M, et al. Fabrication of two‐dimensional polymer arrays: template synthesis of polypyrrole between redox‐active coordination nanoslits. Angew Chem Int Ed. 2008;47:9883–6.

    Article  CAS  Google Scholar 

  37. Uemura T, Kadowaki Y, Yanai N, Kitagawa S. Template synthesis of porous polypyrrole in 3D coordination nanochannels. Chem Mater. 2009;21:4096–8.

    Article  CAS  Google Scholar 

  38. Li Z, Fraile J, Viñas C, Teixidor F, Planas JG. Post-synthetic modification of a highly flexible 3D soft porous metal–organic framework by incorporating conducting polypyrrole: enhanced MOF stability and capacitance as an electrode material. Chem Commun. 2021;57:2523–6.

    Article  CAS  Google Scholar 

  39. Aliev SB, Samsonenko DG, Maksimovskiy EA, Fedorovskaya EO, Sapchenko SA, Fedin VP. Polyaniline-intercalated MIL-101: selective CO2 sorption and supercapacitor properties. N J Chem. 2016;40:5306–12.

    Article  CAS  Google Scholar 

  40. Klyatskaya S, Kanj AB, Molina-Jirón C, Heidrich S, Velasco L, Natzeck C, et al. Conductive metal–organic framework thin film hybrids by electropolymerization of monosubstituted acetylenes. ACS Appl Mater Interfaces. 2020;12:30972–9.

    Article  CAS  PubMed  Google Scholar 

  41. Lu C, Ben T, Xu S, Qiu S. Electrochemical synthesis of a microporous conductive polymer based on a metal–organic framework thin film. Angew Chem Int Ed. 2014;53:6454–8.

    Article  CAS  Google Scholar 

  42. Uemura T, Kitaura R, Ohta Y, Nagaoka M, Kitagawa S. Nanochannel‐promoted polymerization of substituted acetylenes in porous coordination polymers. Angew Chem. 2006;118:4218–22.

    Article  Google Scholar 

  43. Kobayashi Y, Horie Y, Honjo K, Uemura T, Kitagawa S. The controlled synthesis of polyglucose in one-dimensional coordination nanochannels. Chem Commun. 2016;52:5156–9.

    Article  CAS  Google Scholar 

  44. Kitao T, MacLean MWA, Nakata K, Takayanagi M, Nagaoka M, Uemura T. Scalable and precise synthesis of armchair-edge graphene nanoribbon in metal–organic framework. J Am Chem Soc. 2020;142:5509–14.

    Article  CAS  PubMed  Google Scholar 

  45. Narita A, Wang XY, Feng X, Müllen K. New advances in nanographene chemistry. Chem Soc Rev. 2015;44:6616–43.

    Article  CAS  PubMed  Google Scholar 

  46. Cai JM, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010;466:470–3.

    Article  CAS  PubMed  Google Scholar 

  47. Narita A, Feng XL, Hernandez Y, Jensen SA, Bonn M, Yang HF, et al. Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons. Nat Chem. 2014;6:126–32.

    Article  CAS  PubMed  Google Scholar 

  48. Uemura T, Yanai N, Watanabe S, Tanaka H, Numaguchi R, Miyahara MT, et al. Unveiling thermal transitions of polymers in subnanometre pores. Nat Commun. 2010;1:83.

    Article  PubMed  CAS  Google Scholar 

  49. Uemura T, Washino G, Kitagawa S, Takahashi H, Yoshida A, Takeyasu K, et al. Molecular-level studies on dynamic behavior of oligomeric chain molecules in porous coordination polymers. J Phy Chem C. 2015;119:21504–14.

    Article  CAS  Google Scholar 

  50. Le Ouay B, Watanabe C, Mochizuki S, Takayanagi M, Nagaoka M, Kitao T, et al. Selective sorting of polymers with different terminal groups using metal-organic frameworks. Nat Commun. 2018;9:3635.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Oe N, Hosono N, Uemura T. Revisiting molecular adsorption: unconventional uptake of polymer chains from solution into sub-nanoporous media. Chem Sci. 2021;12:12576–86.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sawayama T, Wang Y, Watanabe T, Takayanagi M, Yamamoto T, Hosono N, et al. Metal-organic frameworks for practical separation of cyclic and linear polymers. Angew Chem Int Ed. 2021;60:11830–4.

    Article  CAS  Google Scholar 

  53. Kitao T, Bracco S, Comotti A, Sozzani P, Naito M, Seki S, et al. Confinement of single polysilane chains in coordination nanospaces. J Am Chem Soc. 2015;137:5231–8.

    Article  CAS  PubMed  Google Scholar 

  54. Koh K, Wong-Foy AG, Matzger AJ. Coordination copolymerization mediated by Zn4O (CO2R)6 metal clusters: a balancing act between statistics and geometry. J Am Chem Soc. 2010;132:15005–10.

    Article  CAS  PubMed  Google Scholar 

  55. Yanai N, Uemura T, Kosaka W, Matsuda R, Kodani T, Koh M, et al. Inclusion and dielectric properties of a vinylidene fluoride oligomer in coordination nanochannels. Dalton Trans. 2012;41:4195–8.

    Article  CAS  PubMed  Google Scholar 

  56. Sawada T, Matsumoto A, Fujita M. Coordination-driven folding and assembly of a short peptide into a protein-like two-nanometer-sized channel. Angew Chem Int Ed. 2014;53:7228–32.

    Article  CAS  Google Scholar 

  57. Peng S, Bie B, Sun Y, Liu M, Cong H, Zhou W, et al. Metal–organic frameworks for precise inclusion of single-stranded DNA and transfection in immune cells. Nat Commun. 2018;9:1293.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Hosono N, Uemura T. Metal–organic frameworks as versatile media for polymer adsorption and separation. Acc Chem Res. 2021;54:3593–603.

    Article  CAS  PubMed  Google Scholar 

  59. Seki S, Saeki A, Sakurai T, Sakamaki D. Charge carrier mobility in organic molecular materials probed by electromagnetic waves. Phys Chem Chem Phys. 2014;16:11093–113.

    Article  CAS  PubMed  Google Scholar 

  60. Yamada T, Eguchi T, Wakiyama T, Narushima T, Okamoto H, Kimizuka N. Synthesis of chiral Labtb and visualization of its enantiomeric excess by induced circular dichroism imaging. Chem Eur J. 2019;25:6698–702.

    Article  PubMed  Google Scholar 

  61. Kitao T, Nagasaka Y, Karasawa M, Eguchi T, Kimizuka N, Ishii K, et al. Transcription of chirality from metal-organic framework to polythiophene. J Am Chem Soc. 2019;141:19565–9.

    Article  CAS  PubMed  Google Scholar 

  62. Kitao T, MacLean MWA, Le Ouay B, Sasaki Y, Tsujimoto M, Kitagawa S, et al. Preparation of polythiophene microrods with ordered chain alignment using nanoporous coordination template. Polym Chem. 2017;8:5077–81.

    Article  CAS  Google Scholar 

  63. Lo SW, Kitao T, Nada Y, Murata K, Ishii K, Uemura T. Chiral Induction in Buckminsterfullerene Using a Metal–Organic Framework. Angew Chem Int Ed. 2021;60:17947–51.

    Article  CAS  Google Scholar 

  64. Zeng M, Ren A, Wu W, Zhao Y, Zhan C, Yao J. Lanthanide MOFs for inducing molecular chirality of achiral stilbazolium with strong circularly polarized luminescence and efficient energy transfer for color tuning. Chem Sci. 2020;11:9154–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kitao T, Sasaki Y, Kitagawa S, Imamura Y, Tsujimoto M, Seki S, et al. Selective formation of end-on orientation between polythiophene and fullerene mediated by coordination nanospaces. J Phys Chem C. 2018;122:24182–9.

    Article  CAS  Google Scholar 

  66. Zhu QL, Xu Q. Metal–organic framework composites. Chem Soc Rev. 2014;43:5468–512.

    Article  CAS  PubMed  Google Scholar 

  67. Karve VV, Schertenleib T, Espín J, Trukhina O, Zhang X, Campins MX, et al. Hybridization of synthetic humins with a metal–organic framework for precious metal recovery and reuse. ACS Appl Mater Interfaces. 2021;13:60027–34.

    Article  CAS  PubMed  Google Scholar 

  68. Kung CW, Platero-Prats AE, Drout RJ, Kang J, Wang TC, Audu CO, et al. Inorganic “Conductive Glass” approach to rendering mesoporous metal–organic frameworks electronically conductive and chemically responsive. ACS Appl Mater Interfaces. 2018;10:30532–40.

    Article  CAS  PubMed  Google Scholar 

  69. Dědek I, Kupka V, Jakubec P, Šedajová V, Jayaramulu K, Otyepka M. Metal–organic framework/conductive polymer hybrid materials for supercapacitors. Appl Mater Today. 2022;26:101387.

    Article  Google Scholar 

  70. Le Ouay B, Boudot M, Kitao T, Yanagida T, Kitagawa S, Uemura T. Nanostructuration of PEDOT in porous coordination polymers for tunable porosity and conductivity. J Am Chem Soc. 2016;138:10088–91.

    Article  PubMed  CAS  Google Scholar 

  71. Li Z, Guo Y, Wang X, Ying W, Chen D, Ma X, et al. Highly conductive PEDOT:PSS threaded HKUST-1 thin films. Chem Commun. 2018;54:13865–8.

    Article  CAS  Google Scholar 

  72. Hou R, Miao M, Wang Q, Yue T, Liu H, Park HS, et al. Integrated conductive hybrid architecture of metal–organic framework nanowire array on polypyrrole membrane for all-solid-state flexible supercapacitors. Adv Energy Mater. 2020;10:1901892.

    Article  CAS  Google Scholar 

  73. Liu Y, Xu N, Chen W, Wang X, Sun C, Su Z. Supercapacitor with high cycling stability through electrochemical deposition of metal–organic frameworks/polypyrrole positive electrode. Dalton Trans. 2018;47:13472–8.

    Article  CAS  PubMed  Google Scholar 

  74. Ma Y, Wei L, He Y, Yuan X, Su Y, Gu Y, et al. “Blockchain” synergy in conductive polymer-filled metal–organic frameworks for dendrite-free Li plating/stripping with high coulombic efficiency. Angew Chem Int Ed. 2022;61:e202116291.

    CAS  Google Scholar 

  75. Yanai N, Kitayama K, Hijikata Y, Sato H, Matsuda R, Kubota Y, et al. Gas detection by structural variations of fluorescent guest molecules in a flexible porous coordination polymer. Nat Mater. 2011;10:787–93.

    Article  CAS  PubMed  Google Scholar 

  76. Wang S, Kitao T, Guillou N, Wahiduzzaman M, Martineau-Corcos C, Nouar F, et al. A phase transformable ultrastable titanium-carboxylate framework for photoconduction. Nat Commun. 2018;9:1660.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Haldar R, Sen B, Hurrle S, Kitao T, Sankhla R, Kühl B, et al. Oxidative polymerization of terthiophene and a substituted thiophene monomer in metal–organic framework thin films. Eur Polym J. 2018;109:162–8.

    Article  CAS  Google Scholar 

  78. Bennett TD, Horike S. Liquid, glass and amorphous solid states of coordination polymers and metal–organic frameworks. Nat Rev Mater. 2018;3:431–40.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JST-PRESTO (JPMJPR21A7) programs and a Grant-in-Aid for Scientific Research (21H01738 and 21H05473) from the Ministry of Education, Culture, Sports, Science and Technology, Government of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kitao.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitao, T. Controlled assemblies of conjugated polymers in metal−organic frameworks. Polym J 54, 1045–1053 (2022). https://doi.org/10.1038/s41428-022-00657-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00657-5

This article is cited by

Search

Quick links