Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Covalent organic frameworks

Abstract

The dream to prepare well-defined materials drives the methodological evolution for molecular synthesis, structural control and materials manufacturing. Among various methods, chemical approaches to design, synthesize, control and engineer small molecules, polymers and networks offer the fundamental strategies. Merging covalent bonds and non-covalent interactions into one method to establish a complex structural composition for specific functions, mimicking biological systems such as DNA, RNA and proteins, is at the centre of chemistry and materials science. Covalent organic frameworks (COFs) are a class of crystalline porous polymers that enable the integration of organic units into highly ordered structures via polymerization. This polymerization system is unique as it deploys covalent bonds to construct the primary order structures of polymeric backbones via polycondensation and leverages on non-covalent interactions to create the high order structures of polymeric networks via supramolecular polymerization in a one-pot reaction system. This Primer covers all aspects of the field of COFs from chemistry to physics, materials and applications, and outlines the design principle, experimental methods, characterization and applications, with an aim to show a concise yet full picture of the field. The key fundamental issues to be addressed are analysed with an outlook on the future major directions from different perspectives.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural construction of COFs.
Fig. 2: Topology diagram principle in guiding the design of COFs.
Fig. 3: Reactions for linkage formation.
Fig. 4: Principle for aniline-aided growth of single-crystal 3D COFs.
Fig. 5: Characterization results.
Fig. 6: Structural observation results.
Fig. 7: Applications of COFs.

Similar content being viewed by others

References

  1. Saikia, I., Borah, A. J. & Phukan, P. Use of bromine and bromo-organic compounds in organic synthesis. Chem. Rev. 116, 6837–7042 (2016).

    Article  Google Scholar 

  2. Faure, E. et al. Catechols as versatile platforms in polymer chemistry. Prog. Polym. Sci. 38, 236–270 (2013).

    Article  Google Scholar 

  3. Diner, C. & Szabó, K. J. Recent advances in the preparation and application of allylboron species in organic synthesis. J. Am. Chem. Soc. 139, 2–14 (2017).

    Article  Google Scholar 

  4. Song, Y., Sun, Q., Aguila, B. & Ma, S. Opportunities of covalent organic frameworks for advanced applications. Adv. Sci. 6, 1801410 (2019).

    Article  Google Scholar 

  5. Hisaki, I., Xin, C., Takahashi, K. & Nakamura, T. Designing hydrogen-bonded organic frameworks (HOFs) with permanent porosity. Angew. Chem. Int. Ed. 58, 11160–11170 (2019).

    Article  Google Scholar 

  6. Wang, S., Yao, W., Lin, J., Ding, Z. & Wang, X. Cobalt imidazolate metal–organic frameworks photosplit CO2 under mild reaction conditions. Angew. Chem. Int. Ed. 53, 1034–1038 (2014).

    Article  Google Scholar 

  7. Manrao, E. A. et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat. Biotechnol. 30, 349–353 (2012).

    Article  Google Scholar 

  8. Gao, Y. et al. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 368, 779–782 (2020).

    Article  ADS  Google Scholar 

  9. Warner, K. D., Hajdin, C. E. & Weeks, K. M. Principles for targeting RNA with drug-like small molecules. Nat. Rev. Drug Discov. 17, 547–558 (2018).

    Article  Google Scholar 

  10. Verkman, A. S. & Mitra, A. K. Structure and function of aquaporin water channels. Am. J. Physiol. Ren. Physiol. 278, F13–F28 (2000).

    Article  Google Scholar 

  11. Kühlbrandt, W. Structure and mechanisms of F-type ATP synthases. Annu. Rev. Biochem. 88, 515–549 (2019).

    Article  Google Scholar 

  12. Hanson, M. A. et al. Crystal structure of a lipid G protein-coupled receptor. Science 335, 851–855 (2012).

    Article  ADS  Google Scholar 

  13. Perrier, S. 50th anniversary perspective: RAFT polymerization — a user guide. Macromolecules 50, 7433–7447 (2017).

    Article  ADS  Google Scholar 

  14. Mohapatra, H., Kleiman, M. & Esser-Kahn, A. P. Mechanically controlled radical polymerization initiated by ultrasound. Nat. Chem. 9, 135–139 (2017).

    Article  Google Scholar 

  15. Kang, J. et al. A rational strategy for the realization of chain-growth supramolecular polymerization. Science 347, 646–651 (2015).

    Article  ADS  Google Scholar 

  16. Hashim, P. K., Bergueiro, J., Meijer, E. W. & Aida, T. Supramolecular polymerization: a conceptual expansion for innovative materials. Prog. Polym. Sci. 105, 101250 (2020).

    Article  Google Scholar 

  17. Feng, X., Ding, X. & Jiang, D. Covalent organic frameworks. Chem. Soc. Rev. 41, 6010–6022 (2012).

    Article  Google Scholar 

  18. Diercks, C. S. & Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 355, eaal1585 (2017).

    Article  Google Scholar 

  19. Xing, C. et al. Enhancing enzyme activity by the modulation of covalent interactions in the confined channels of covalent organic frameworks. Angew. Chem. Int. Ed. 61, e202201378 (2022).

    Article  Google Scholar 

  20. Traxler, M. et al. Acridine-functionalized covalent organic frameworks (COFs) as photocatalysts for metallaphotocatalytic C−N cross-coupling. Angew. Chem. Int. Ed. 61, e202117738 (2022).

    Article  Google Scholar 

  21. Zhang, W. et al. Reconstructed covalent organic frameworks. Nature 604, 72–79 (2022).

    Article  ADS  Google Scholar 

  22. Guo, J. et al. Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds. Nat. Commun. 4, 2736 (2013). This work reports the discovery of the phenazine linkage to synthesize fully π-conjugated and robust COFs.

    Article  ADS  Google Scholar 

  23. Jin, E. et al. Two-dimensional sp2 carbon-conjugated covalent organic frameworks. Science 357, 673–676 (2017). This work reports the discovery of ferromagnetism in carbon-conjugated COFs.

    Article  ADS  Google Scholar 

  24. Geng, K. et al. Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 120, 8814–8933 (2020).

    Article  Google Scholar 

  25. Mu, Z. et al. Covalent organic frameworks with record pore apertures. J. Am. Chem. Soc. 144, 5145–5154 (2022).

    Article  Google Scholar 

  26. Côté, A. P., El-Kaderi, H. M., Furukawa, H., Hunt, J. R. & Yaghi, O. M. Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks. J. Am. Chem. Soc. 129, 12914–12915 (2007).

    Article  Google Scholar 

  27. Ding, X. et al. Synthesis of metallophthalocyanine covalent organic frameworks that exhibit high carrier mobility and photoconductivity. Angew. Chem. Int. Ed. 50, 1289–1293 (2011).

    Article  Google Scholar 

  28. Chen, X., Addicoat, M., Irle, S., Nagai, A. & Jiang, D. Control of crystallinity and porosity of covalent organic frameworks by managing interlayer interactions based on self-complementary π-electronic force. J. Am. Chem. Soc. 135, 546–549 (2013).

    Article  Google Scholar 

  29. Yue, Y., Li, H., Chen, H. & Huang, N. Piperazine-linked covalent organic frameworks with high electrical conductivity. J. Am. Chem. Soc. 144, 2873–2878 (2022).

    Article  Google Scholar 

  30. Jin, E. et al. Designed synthesis of stable light-emitting two-dimensional sp2 carbon-conjugated covalent organic frameworks. Nat. Commun. 9, 4143 (2018).

    Article  ADS  Google Scholar 

  31. Li, L. et al. Isoreticular series of two-dimensional covalent organic frameworks with the kgd topology and controllable micropores. J. Am. Chem. Soc. 144, 6475–6482 (2022).

    Article  Google Scholar 

  32. Dalapati, S. et al. Rational design of crystalline supermicroporous covalent organic frameworks with triangular topologies. Nat. Commun. 6, 7786 (2015).

    Article  ADS  Google Scholar 

  33. Krishnaraj, C. et al. Strongly reducing (diarylamino)benzene-based covalent organic framework for metal-free visible light photocatalytic H2O2 generation. J. Am. Chem. Soc. 142, 20107–20116 (2020).

    Article  Google Scholar 

  34. Huang, N. et al. Multiple-component covalent organic frameworks. Nat. Commun. 7, 12325 (2016).

    Article  ADS  Google Scholar 

  35. Chen, X. et al. Designed synthesis of double-stage two-dimensional covalent organic frameworks. Sci. Rep. 5, 14650 (2015).

    Article  ADS  Google Scholar 

  36. Yu, X. et al. Gating effects for ion transport in three-dimensional functionalized covalent organic frameworks. Angew. Chem. Int. Ed. 61, e202200820 (2022).

    Google Scholar 

  37. Wang, S. et al. A three-dimensional sp2 carbon-conjugated covalent organic framework. J. Am. Chem. Soc. 143, 15562–15566 (2021).

    Article  Google Scholar 

  38. Uribe-Romo, F. J. et al. A crystalline imine-linked 3-D porous covalent organic framework. J. Am. Chem. Soc. 131, 4570–4571 (2009).

    Article  Google Scholar 

  39. Xie, Y. et al. Tuning the topology of three-dimensional covalent organic frameworks via steric control: from pts to unprecedented ljh. J. Am. Chem. Soc. 143, 7279–7284 (2021).

    Article  Google Scholar 

  40. Li, H. et al. Three-dimensional tetrathiafulvalene-based covalent organic frameworks for tunable electrical conductivity. J. Am. Chem. Soc. 141, 13324–13329 (2019).

    Article  Google Scholar 

  41. El-Kaderi Hani, M. et al. Designed synthesis of 3D covalent organic frameworks. Science 316, 268–272 (2007).

    Article  ADS  Google Scholar 

  42. Baldwin, L. A., Crowe, J. W., Pyles, D. A. & McGrier, P. L. Metalation of a mesoporous three-dimensional covalent organic framework. J. Am. Chem. Soc. 138, 15134–15137 (2016).

    Article  Google Scholar 

  43. Sun, R., Wang, X., Wang, X. & Tan, B. Three-dimensional crystalline covalent triazine frameworks via a polycondensation approach. Angew. Chem. Int. Ed. 61, e202117668 (2022).

    Google Scholar 

  44. Yahiaoui, O. et al. 3D anionic silicate covalent organic framework with srs topology. J. Am. Chem. Soc. 140, 5330–5333 (2018).

    Article  Google Scholar 

  45. Ma, T. et al. Diverse crystal size effects in covalent organic frameworks. Nat. Commun. 11, 6128 (2020).

    Article  ADS  Google Scholar 

  46. Han, B. et al. Maximizing electroactive sites in a three-dimensional covalent organic framework for significantly improved carbon dioxide reduction electrocatalysis. Angew. Chem. Int. Ed. 61, e202114244 (2022).

    Google Scholar 

  47. Liu, Y. et al. Weaving of organic threads into a crystalline covalent organic framework. Science 351, 365–369 (2016).

    Article  ADS  Google Scholar 

  48. Lan, Y. et al. Materials genomics methods for high-throughput construction of COFs and targeted synthesis. Nat. Commun. 9, 5274 (2018).

    Article  ADS  Google Scholar 

  49. Kang, X. et al. Reticular synthesis of tbo topology covalent organic frameworks. J. Am. Chem. Soc. 142, 16346–16356 (2020).

    Article  Google Scholar 

  50. Nguyen, H. L., Gropp, C., Ma, Y., Zhu, C. & Yaghi, O. M. 3D covalent organic frameworks selectively crystallized through conformational design. J. Am. Chem. Soc. 142, 20335–20339 (2020).

    Article  Google Scholar 

  51. Martínez-Abadía, M. et al. π-Interpenetrated 3D covalent organic frameworks from distorted polycyclic aromatic hydrocarbons. Angew. Chem. Int. Ed. 60, 9941–9946 (2021).

    Article  Google Scholar 

  52. Gropp, C., Ma, T., Hanikel, N. & Yaghi Omar, M. Design of higher valency in covalent organic frameworks. Science 370, eabd6406 (2020).

    Article  Google Scholar 

  53. Ma, J.-X. et al. Cage based crystalline covalent organic frameworks. J. Am. Chem. Soc. 141, 3843–3848 (2019).

    Article  Google Scholar 

  54. Zhu, Q. et al. 3D cage COFs: a dynamic three-dimensional covalent organic framework with high-connectivity organic cage nodes. J. Am. Chem. Soc. 142, 16842–16848 (2020).

    Article  Google Scholar 

  55. Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005). This work reports the synthesis of the early example of COFs.

    Article  ADS  Google Scholar 

  56. Nagai, A. et al. A squaraine-linked mesoporous covalent organic framework. Angew. Chem. Int. Ed. 52, 3770–3774 (2013).

    Article  Google Scholar 

  57. Ding, S.-Y. et al. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction. J. Am. Chem. Soc. 133, 19816–19822 (2011).

    Article  Google Scholar 

  58. Chen, X. et al. Locking covalent organic frameworks with hydrogen bonds: general and remarkable effects on crystalline structure, physical properties, and photochemical activity. J. Am. Chem. Soc. 137, 3241–3347 (2015).

    Article  Google Scholar 

  59. Ascherl, L. et al. Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks. Nat. Chem. 8, 310–316 (2016).

    Article  Google Scholar 

  60. Li, Z. et al. A 2D azine-linked covalent organic framework for gas storage applications. Chem. Commun. 50, 13825–13828 (2014).

    Article  Google Scholar 

  61. Han, X., Huang, J., Yuan, C., Liu, Y. & Cui, Y. Chiral 3D covalent organic frameworks for high performance liquid chromatographic enantioseparation. J. Am. Chem. Soc. 140, 892–895 (2018).

    Article  Google Scholar 

  62. Lyu, H., Diercks, C. S., Zhu, C. & Yaghi, O. M. Porous crystalline olefin-linked covalent organic frameworks. J. Am. Chem. Soc. 141, 6848–6852 (2019).

    Article  Google Scholar 

  63. Huang, N. et al. A stable and conductive metallophthalocyanine framework for electrocatalytic carbon dioxide reduction in water. Angew. Chem. Int. Ed. 59, 16587–16593 (2020).

    Article  Google Scholar 

  64. Li, X. et al. Dynamic covalent synthesis of crystalline porous graphitic frameworks. Chem 6, 933–944 (2020).

    Article  Google Scholar 

  65. Zhuang, X. et al. A two-dimensional conjugated polymer framework with fully sp2-bonded carbon skeleton. Polym. Chem. 7, 4176–4181 (2016).

    Article  Google Scholar 

  66. Xu, S., Richter, M. & Feng, X. Vinylene-linked two-dimensional covalent organic frameworks: synthesis and functions. Acc. Mater. Res. 2, 252–265 (2021).

    Article  Google Scholar 

  67. Cui, W.-R. et al. Regenerable and stable sp2 carbon-conjugated covalent organic frameworks for selective detection and extraction of uranium. Nat. Commun. 11, 436 (2020).

    Article  ADS  Google Scholar 

  68. Meng, F. et al. Synthesis of ionic vinylene-linked covalent organic frameworks through quaternization-activated Knoevenagel condensation. Angew. Chem. Int. Ed. 60, 13614–13620 (2021).

    Article  Google Scholar 

  69. Acharjya, A., Longworth-Dunbar, L., Roeser, J., Pachfule, P. & Thomas, A. Synthesis of vinylene-linked covalent organic frameworks from acetonitrile: combining cyclotrimerization and aldol condensation in one pot. J. Am. Chem. Soc. 142, 14033–14038 (2020).

    Article  Google Scholar 

  70. Acharjya, A., Pachfule, P., Roeser, J., Schmitt, F.-J. & Thomas, A. Vinylene-linked covalent organic frameworks by base-catalyzed aldol condensation. Angew. Chem. Int. Ed. 58, 14865–14870 (2019). This work reports the synthesis of a C=C COF with base conditions.

    Article  Google Scholar 

  71. Jadhav, T. et al. 2D poly(arylene vinylene) covalent organic frameworks via aldol condensation of trimethyltriazine. Angew. Chem. Int. Ed. 58, 13753–13757 (2019).

    Article  ADS  Google Scholar 

  72. Bi, S. et al. Two-dimensional semiconducting covalent organic frameworks via condensation at arylmethyl carbon atoms. Nat. Commun. 10, 2467 (2019).

    Article  ADS  Google Scholar 

  73. Pastoetter, D. L. et al. Synthesis of vinylene-linked two-dimensional conjugated polymers via the Horner–Wadsworth–Emmons reaction. Angew. Chem. Int. Ed. 59, 23620–23625 (2020).

    Article  Google Scholar 

  74. Grunenberg, L. et al. Amine-linked covalent organic frameworks as a platform for postsynthetic structure interconversion and pore-wall modification. J. Am. Chem. Soc. 143, 3430–3438 (2021).

    Article  Google Scholar 

  75. Li, X.-T. et al. Construction of covalent organic frameworks via three-component one-pot Strecker and Povarov reactions. J. Am. Chem. Soc. 142, 6521–6526 (2020).

    Article  Google Scholar 

  76. Liu, H. et al. Covalent organic frameworks linked by amine bonding for concerted electrochemical reduction of CO2. Chem 4, 1696–1709 (2018).

    Article  Google Scholar 

  77. Stewart, D. et al. Stable and ordered amide frameworks synthesised under reversible conditions which facilitate error checking. Nat. Commun. 8, 1102 (2017).

    Article  ADS  Google Scholar 

  78. Waller, P. J. et al. Chemical conversion of linkages in covalent organic frameworks. J. Am. Chem. Soc. 138, 15519–15522 (2016).

    Article  Google Scholar 

  79. Zhou, Z.-B. et al. A facile, efficient, and general synthetic method to amide-linked covalent organic frameworks. J. Am. Chem. Soc. 144, 1138–1143 (2022).

    Article  Google Scholar 

  80. Qian, H.-L., Meng, F.-L., Yang, C.-X. & Yan, X.-P. Irreversible amide-linked covalent organic framework for selective and ultrafast gold recovery. Angew. Chem. Int. Ed. 59, 17607–17613 (2020).

    Article  Google Scholar 

  81. Lyle, S. J. et al. Multistep solid-state organic synthesis of carbamate-linked covalent organic frameworks. J. Am. Chem. Soc. 141, 11253–11258 (2019).

    Article  Google Scholar 

  82. Li, C. et al. Asymmetric photocatalysis over robust covalent organic frameworks with tetrahydroquinoline linkage. Chin. J. Catal. 41, 1288–1297 (2020).

    Article  Google Scholar 

  83. Zhou, Z.-B. et al. Toward azo-linked covalent organic frameworks by developing linkage chemistry via linker exchange. Nat. Commun. 13, 2180 (2022).

    Article  ADS  Google Scholar 

  84. Feng, J. et al. Fused-ring-linked covalent organic frameworks. J. Am. Chem. Soc. 144, 6594–6603 (2022).

    Article  Google Scholar 

  85. Wang, Y. et al. Construction of fully conjugated covalent organic frameworks via facile linkage conversion for efficient photoenzymatic catalysis. J. Am. Chem. Soc. 142, 5958–5963 (2020).

    Article  Google Scholar 

  86. Ren, S. et al. Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis. Adv. Mater. 24, 2357–2361 (2012).

    Article  ADS  Google Scholar 

  87. Yang, Z. et al. Transformation strategy for highly crystalline covalent triazine frameworks: from staggered AB to eclipsed AA stacking. J. Am. Chem. Soc. 142, 6856–6860 (2020).

    Article  Google Scholar 

  88. Wang, K. et al. Covalent triazine frameworks via a low-temperature polycondensation approach. Angew. Chem. Int. Ed. 56, 14149–14153 (2017).

    Article  Google Scholar 

  89. Liu, M. et al. Crystalline covalent triazine frameworks by in situ oxidation of alcohols to aldehyde monomers. Angew. Chem. Int. Ed. 57, 11968–11972 (2018).

    Article  Google Scholar 

  90. Zhang, S. et al. Strong-base-assisted synthesis of a crystalline covalent triazine framework with high hydrophilicity via benzylamine monomer for photocatalytic water splitting. Angew. Chem. Int. Ed. 59, 6007–6014 (2020).

    Article  Google Scholar 

  91. Guo, L. et al. Crystallization of covalent triazine frameworks via a heterogeneous nucleation approach for efficient photocatalytic applications. Chem. Mater. 33, 1994–2003 (2021).

    Article  ADS  Google Scholar 

  92. Pyles, D. A., Crowe, J. W., Baldwin, L. A. & McGrier, P. L. Synthesis of benzobisoxazole-linked two-dimensional covalent organic frameworks and their carbon dioxide capture properties. ACS Macro Lett. 5, 1055–1058 (2016).

    Article  Google Scholar 

  93. Wei, P.-F. et al. Benzoxazole-linked ultrastable covalent organic frameworks for photocatalysis. J. Am. Chem. Soc. 140, 4623–4631 (2018).

    Article  Google Scholar 

  94. Seo, J.-M., Noh, H.-J., Jeong, H. Y. & Baek, J.-B. Converting unstable imine-linked network into stable aromatic benzoxazole-linked one via post-oxidative cyclization. J. Am. Chem. Soc. 141, 11786–11790 (2019).

    Article  Google Scholar 

  95. Li, T. et al. A 2D covalent organic framework involving strong intramolecular hydrogen bonds for advanced supercapacitors. Polym. Chem. 11, 47–52 (2020).

    Article  Google Scholar 

  96. Wang, K. et al. Synthesis of stable thiazole-linked covalent organic frameworks via a multicomponent reaction. J. Am. Chem. Soc. 142, 11131–11138 (2020).

    Article  Google Scholar 

  97. Haase, F. et al. Topochemical conversion of an imine- into a thiazole-linked covalent organic framework enabling real structure analysis. Nat. Commun. 9, 2600 (2018).

    Article  ADS  Google Scholar 

  98. Waller, P. J., AlFaraj, Y. S., Diercks, C. S., Jarenwattananon, N. N. & Yaghi, O. M. Conversion of imine to oxazole and thiazole linkages in covalent organic frameworks. J. Am. Chem. Soc. 140, 9099–9103 (2018).

    Article  Google Scholar 

  99. Wang, P.-L., Ding, S.-Y., Zhang, Z.-C., Wang, Z.-P. & Wang, W. Constructing robust covalent organic frameworks via multicomponent reactions. J. Am. Chem. Soc. 141, 18004–18008 (2019).

    Article  Google Scholar 

  100. Ranjeesh, K. C. et al. Imidazole-linked crystalline two-dimensional polymer with ultrahigh proton-conductivity. J. Am. Chem. Soc. 141, 14950–14954 (2019).

    Article  Google Scholar 

  101. Jiang, Y. et al. Partial oxidation-induced electrical conductivity and paramagnetism in a Ni(II) tetraaza[14]annulene-linked metal organic framework. J. Am. Chem. Soc. 141, 16884–16893 (2019).

    Article  Google Scholar 

  102. Howarth, A. J. et al. Best practices for the synthesis, activation, and characterization of metal–organic frameworks. Chem. Mater. 29, 26–39 (2017).

    Article  Google Scholar 

  103. Ma, T. et al. Single-crystal X-ray diffraction structures of covalent organic frameworks. Science 361, 48–52 (2018). This work reports a seeded growth strategy to prepare single-crystal 3D COFs 100 μm in size.

    Article  ADS  Google Scholar 

  104. Liang, L. et al. Non-interpenetrated single-crystal covalent organic frameworks. Angew. Chem. Int. Ed. 59, 17991–17995 (2020).

    Article  Google Scholar 

  105. Evans, A. M. et al. Seeded growth of single-crystal two-dimensional covalent organic frameworks. Science 361, 52–57 (2018). This work reports a seeded growth strategy to prepare single-crystal 2D COFs 1 μm in size.

    Article  ADS  Google Scholar 

  106. Zhang, L. et al. Covalent organic framework for efficient two-photon absorption. Matter 2, 1049–1063 (2020).

    Article  Google Scholar 

  107. Peng, L. et al. Ultra-fast single-crystal polymerization of large-sized covalent organic frameworks. Nat. Commun. 12, 5077 (2021).

    Article  ADS  Google Scholar 

  108. Liu, K. et al. On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers. Nat. Chem. 11, 994–1000 (2019).

    Article  ADS  Google Scholar 

  109. Zhang, T. et al. Engineering crystalline quasi-two-dimensional polyaniline thin film with enhanced electrical and chemiresistive sensing performances. Nat. Commun. 10, 4225 (2019). This work showcases a rare example of COFs as a chemiresistive sensor.

    Article  ADS  Google Scholar 

  110. Karak, S. et al. Constructing ultraporous covalent organic frameworks in seconds via an organic terracotta process. J. Am. Chem. Soc. 139, 1856–1862 (2017).

    Article  Google Scholar 

  111. Martín-Illán, J. Á. et al. Macroscopic ultralight aerogel monoliths of imine-based covalent organic frameworks. Angew. Chem. Int. Ed. 60, 13969–13977 (2021).

    Article  Google Scholar 

  112. Vazquez-Molina, D. A. et al. Mechanically shaped two-dimensional covalent organic frameworks reveal crystallographic alignment and fast Li-ion conductivity. J. Am. Chem. Soc. 138, 9767–9770 (2016).

    Article  Google Scholar 

  113. Rodríguez-San-Miguel, D. et al. Crystalline fibres of a covalent organic framework through bottom-up microfluidic synthesis. Chem. Commun. 52, 9212–9215 (2016).

    Article  Google Scholar 

  114. Zhang, M. et al. Hierarchical-coassembly-enabled 3D-printing of homogeneous and heterogeneous covalent organic frameworks. J. Am. Chem. Soc. 141, 5154–5158 (2019).

    Article  Google Scholar 

  115. Franco, C. et al. Biomimetic synthesis of sub-20 nm covalent organic frameworks in water. J. Am. Chem. Soc. 142, 3540–3547 (2020). This work reports COF nanoparticle synthesis in water.

    Article  Google Scholar 

  116. Burke, D. W. et al. Acid exfoliation of imine-linked covalent organic frameworks enables solution processing into crystalline thin films. Angew. Chem. Int. Ed. 59, 5165–5171 (2020).

    Article  Google Scholar 

  117. Colson, J. W. et al. Oriented 2D covalent organic framework thin films on single-layer graphene. Science 332, 228–231 (2011).

    Article  ADS  Google Scholar 

  118. Hussain, S. A., Dey, B., Bhattacharjee, D. & Mehta, N. Unique supramolecular assembly through Langmuir–Blodgett (LB) technique. Heliyon 4, e01038 (2018).

    Article  Google Scholar 

  119. Shinde, D. B. et al. Crystalline 2D covalent organic framework membranes for high-flux organic solvent nanofiltration. J. Am. Chem. Soc. 140, 14342–14349 (2018).

    Article  Google Scholar 

  120. Dong, R., Zhang, T. & Feng, X. Interface-assisted synthesis of 2D materials: trend and challenges. Chem. Rev. 118, 6189–6235 (2018).

    Article  Google Scholar 

  121. Jin, Y. et al. Confined growth of ordered organic frameworks at an interface. Chem. Soc. Rev. 49, 4637–4666 (2020).

    Article  Google Scholar 

  122. Lafferentz, L. et al. Controlling on-surface polymerization by hierarchical and substrate-directed growth. Nat. Chem. 4, 215–220 (2012).

    Article  Google Scholar 

  123. Galeotti, G. et al. Synthesis of mesoscale ordered two-dimensional π-conjugated polymers with semiconducting properties. Nat. Mater. 19, 874–880 (2020).

    Article  ADS  Google Scholar 

  124. Grossmann, L. et al. On-surface photopolymerization of two-dimensional polymers ordered on the mesoscale. Nat. Chem. 13, 730–736 (2021).

    Article  Google Scholar 

  125. Bieri, M. et al. Two-dimensional polymer formation on surfaces: insight into the roles of precursor mobility and reactivity. J. Am. Chem. Soc. 132, 16669–16676 (2010).

    Article  Google Scholar 

  126. Telychko, M. et al. Ultrahigh-yield on-surface synthesis and assembly of circumcoronene into a chiral electronic Kagome-honeycomb lattice. Sci. Adv. 7, eabf0269 (2021).

    Article  ADS  Google Scholar 

  127. Liu, X.-H. et al. On-surface synthesis of single-layered two-dimensional covalent organic frameworks via solid–vapor interface reactions. J. Am. Chem. Soc. 135, 10470–10474 (2013).

    Article  Google Scholar 

  128. Bieri, M. et al. Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem. Commun. 45, 6919–6921 (2009).

    Article  Google Scholar 

  129. Sahabudeen, H. et al. Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness. Nat. Commun. 7, 13461 (2016).

    Article  ADS  Google Scholar 

  130. Dey, K. et al. Selective molecular separation by interfacially crystallized covalent organic framework thin films. J. Am. Chem. Soc. 139, 13083–13091 (2017).

    Article  Google Scholar 

  131. Wang, Z. et al. Viologen-immobilized 2D polymer film enabling highly efficient electrochromic device for solar-powered smart window. Adv. Mater. 34, 2106073 (2022).

    Article  Google Scholar 

  132. Qi, H. et al. Near-atomic-scale observation of grain boundaries in a layer-stacked two-dimensional polymer. Sci. Adv. 6, eabb5976 (2020).

    Article  ADS  Google Scholar 

  133. Park, S. et al. Two‐dimensional boronate ester covalent organic framework thin films with large single crystalline domains for neuromorphic memory device. Angew. Chem. Int. Ed. 132, 2–9 (2020).

    Article  Google Scholar 

  134. Wang, Z. et al. On-water surface synthesis of charged two-dimensional polymer single crystals via the irreversible Katritzky reaction. Nat. Synth. 1, 69–76 (2022). This work reports an on-surface synthesis of membranes.

    Article  ADS  Google Scholar 

  135. Sahabudeen, H. et al. Highly crystalline and semiconducting imine-based two-dimensional polymers enabled by interfacial synthesis. Angew. Chem. Int. Ed. 59, 2–11 (2020).

    Article  Google Scholar 

  136. Fan, H. et al. Covalent organic framework–covalent organic framework bilayer membranes for highly selective gas separation. J. Am. Chem. Soc. 140, 10094–10098 (2018).

    Article  Google Scholar 

  137. Ying, Y. et al. Ultrathin two-dimensional membranes assembled by ionic covalent organic nanosheets with reduced apertures for gas separation. J. Am. Chem. Soc. 142, 4472–4480 (2020).

    Article  Google Scholar 

  138. Fu, J. et al. Fabrication of COF–MOF composite membranes and their highly selective separation of H2/CO2. J. Am. Chem. Soc. 138, 7673–7680 (2016).

    Article  Google Scholar 

  139. Ma, H.-C., Zou, J., Li, X.-T., Chen, G.-J. & Dong, Y.-B. Homochiral covalent organic frameworks for asymmetric catalysis. Chem. Eur. J. 26, 13754–13770 (2020).

    Article  Google Scholar 

  140. Sun, X. et al. In-situ anchoring bimetallic nanoparticles on covalent organic framework as an ultrasensitive electrochemical sensor for levodopa detection. Talanta 225, 122072 (2021).

    Article  Google Scholar 

  141. Huang, Y. et al. Filling COFs with bimetallic nanoclusters for CO2-to-alcohols conversion with H2O oxidation. Appl. Catal. B 288, 120001 (2021).

    Article  Google Scholar 

  142. Liao, Y., Li, J. & Thomas, A. General route to high surface area covalent organic frameworks and their metal oxide composites as magnetically recoverable adsorbents and for energy storage. ACS Macro Lett. 6, 1444–1450 (2017).

    Article  Google Scholar 

  143. Fan, H., Gu, J., Meng, H., Knebel, A. & Caro, J. High‐flux membranes based on the covalent organic framework COF‐LZU1 for selective dye separation by nanofiltration. Angew. Chem. Int. Ed. 57, 4083–4087 (2018).

    Article  Google Scholar 

  144. Chakraborty, D. et al. Cu/Cu2O nanoparticles supported on a phenol–pyridyl COF as a heterogeneous catalyst for the synthesis of unsymmetrical diynes via glaser–hay coupling. ACS Appl. Mater. Interfaces 11, 15670–15679 (2019).

    Article  Google Scholar 

  145. Wen, L. et al. Solid-phase microextraction using a β-ketoenamine-linked covalent organic framework coating for efficient enrichment of synthetic musks in water samples. Anal. Methods. 12, 2434–2442 (2020).

    Article  Google Scholar 

  146. Chen, X., Zhang, H., Ci, C., Sun, W. & Wang, Y. Few-layered boronic ester based covalent organic frameworks/carbon nanotube composites for high-performance K-organic batteries. ACS Nano 13, 3600–3607 (2019).

    Article  Google Scholar 

  147. Zha, Z. et al. 3D graphene functionalized by covalent organic framework thin film as capacitive electrode in alkaline media. ACS Appl. Mater. Interfaces 7, 17837–17843 (2015).

    Article  Google Scholar 

  148. Luo, M. et al. Defects engineering leads to enhanced photocatalytic H2 evolution on graphitic carbon nitride–covalent organic framework nanosheet composite. Small 16, 2001100 (2020).

    Article  Google Scholar 

  149. Kang, Z. et al. Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation. Chem. Mater. 28, 1277–1285 (2016).

    Article  Google Scholar 

  150. Cheng, Y. et al. Highly efficient CO2 capture by mixed matrix membranes containing three-dimensional covalent organic framework fillers. J. Mater. Chem. A 7, 4549–4560 (2019).

    Article  ADS  Google Scholar 

  151. Li, Z. et al. Light-emitting covalent organic frameworks: fluorescence improving via pinpoint surgery and selective switch-on sensing of anions. J. Am. Chem. Soc. 140, 12374–12377 (2018).

    Article  Google Scholar 

  152. Tao, S. et al. Confining H3PO4 network in covalent organic frameworks enables proton super flow. Nat. Commun. 11, 1981 (2020).

    Article  ADS  Google Scholar 

  153. Ghosh, S. et al. Band-like transport of charge carriers in oriented two-dimensional conjugated covalent organic frameworks. Chem. Mater. 34, 736–745 (2022).

    Article  Google Scholar 

  154. Zhang, Y.-B. et al. Single-crystal structure of a covalent organic framework. J. Am. Chem. Soc. 135, 16336–16339 (2013).

    Article  Google Scholar 

  155. Xu, H., Tao, S. & Jiang, D. Proton conduction in crystalline and porous covalent organic frameworks. Nat. Mater. 15, 722–726 (2016).

    Article  ADS  Google Scholar 

  156. Zhang, J., Han, X., Wu, X., Liu, Y. & Cui, Y. Multivariate chiral covalent organic frameworks with controlled crystallinity and stability for asymmetric catalysis. J. Am. Chem. Soc. 139, 8277–8285 (2017).

    Article  Google Scholar 

  157. Jin, E. et al. A nanographene-based two-dimensional covalent organic framework as a stable and efficient photocatalyst. Angew. Chem. Int. Ed. 61, e202114059 (2022).

    Google Scholar 

  158. Huang, N., Wang, P., Addicoat, M. A., Heine, T. & Jiang, D. Ionic covalent organic frameworks: design of a charged interface aligned on 1D channel walls and its unusual electrostatic functions. Angew. Chem. Int. Ed. 56, 4982–4986 (2017).

    Article  Google Scholar 

  159. Jin, E. et al. Module-patterned polymerization towards crystalline 2D sp2-carbon covalent organic framework semiconductors. Angew. Chem. Int. Ed. 61, e202115020 (2022).

    Article  Google Scholar 

  160. Aradi, B., Hourahine, B. & Frauenheim, T. DFTB+, a sparse matrix-based implementation of the DFTB method. J. Phys. Chem. A 111, 5678–5684 (2007).

    Article  Google Scholar 

  161. Rietveld, H. M. A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65–71 (1969).

    Article  Google Scholar 

  162. Xu, H., Gao, J. & Jiang, D. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat. Chem. 7, 905–912 (2015). This work reports highly stable and porous COFs as well as chiral COFs for chiral organocatalysts that are used and featured in various latter research studies.

    Article  Google Scholar 

  163. Banerjee, T. et al. Single-site photocatalytic H2 evolution from covalent organic frameworks with molecular cobaloxime co-catalysts. J. Am. Chem. Soc. 139, 16228–16234 (2017).

    Article  Google Scholar 

  164. Wan, S., Guo, J., Kim, J., Ihee, H. & Jiang, D. A belt-shaped, blue luminescent, and semiconducting covalent organic framework. Angew. Chem. Int. Ed. 47, 8826–8830 (2008). This work reports the first semiconducting, luminescence and photoconductive COFs that are featured in many latter research works.

    Article  Google Scholar 

  165. Dalapati, S., Jin, E., Addicoat, M., Heine, T. & Jiang, D. Highly emissive covalent organic frameworks. J. Am. Chem. Soc. 138, 5797–5800 (2016).

    Article  Google Scholar 

  166. Li, X. et al. Partitioning the interlayer space of covalent organic frameworks by embedding pseudorotaxanes in their backbones. Nat. Chem. 12, 1115–1122 (2020).

    Article  Google Scholar 

  167. Xu, L. et al. Surface-confined crystalline two-dimensional covalent organic frameworks via on-surface Schiff-base coupling. ACS Nano 7, 8066–8073 (2013).

    Article  Google Scholar 

  168. Chen, J. et al. Synthesis of bipyridine-based covalent organic frameworks for visible-light-driven photocatalytic water oxidation. Appl. Catal. B 262, 118271 (2020).

    Article  Google Scholar 

  169. Jin, E. et al. Exceptional electron conduction in two-dimensional covalent organic frameworks. Chem 7, 3309–3324 (2021).

    Article  Google Scholar 

  170. Ding, X. et al. An n-channel two-dimensional covalent organic framework. J. Am. Chem. Soc. 133, 14510–14513 (2011).

    Article  Google Scholar 

  171. Hou, X., Geng, K., Li, J., Wu, S. & Wu, J. Dibenzylidene-s-indacenetetraone linked n-type semiconducting covalent organic framework via aldol condensation. ACS Mater. Lett. 4, 1154–1159 (2022).

    Article  Google Scholar 

  172. Jin, S. et al. Charge dynamics in a donor–acceptor covalent organic framework with periodically ordered bicontinuous heterojunctions. Angew. Chem. Int. Ed. 52, 2017–2021 (2013). This work reports the donor–acceptor COFs for electron transfer and charge separation.

    Article  Google Scholar 

  173. Jin, S. et al. Creation of superheterojunction polymers via direct polycondensation: segregated and bicontinuous donor–acceptor π-columnar arrays in covalent organic frameworks for long-lived charge separation. J. Am. Chem. Soc. 137, 7817–7827 (2015).

    Article  Google Scholar 

  174. Jin, S. et al. Large pore donor–acceptor covalent organic frameworks. Chem. Sci. 4, 4505–4511 (2013).

    Article  Google Scholar 

  175. Feng, X. et al. An ambipolar conducting covalent organic framework with self-sorted and periodic electron donor–acceptor ordering. Adv. Mater. 24, 3026–3031 (2012).

    Article  Google Scholar 

  176. Wan, S., Guo, J., Kim, J., Ihee, H. & Jiang, D. A photoconductive covalent organic framework: self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation. Angew. Chem. Int. Ed. 48, 5439–5442 (2009).

    Article  Google Scholar 

  177. Slot, M. R. et al. Experimental realization and characterization of an electronic Lieb lattice. Nat. Phys. 13, 672 (2017).

    Article  Google Scholar 

  178. Meng, Z., Stolz, R. M. & Mirica, K. A. Two-dimensional chemiresistive covalent organic framework with high intrinsic conductivity. J. Am. Chem. Soc. 141, 11929–11937 (2019).

    Article  Google Scholar 

  179. Wan, S. et al. Covalent organic frameworks with high charge carrier mobility. Chem. Mater. 23, 4094–4097 (2011).

    Article  Google Scholar 

  180. Wang, M. et al. Unveiling electronic properties in metal–phthalocyanine-based pyrazine-linked conjugated two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 141, 16810–16816 (2019).

    Article  Google Scholar 

  181. Tao, S. & Jiang, D. Covalent organic frameworks for energy conversions: current status, challenges, and perspectives. CCS Chem. 3, 2003–2024 (2020).

    Article  Google Scholar 

  182. Jin, E. et al. 2D sp2 carbon-conjugated covalent organic frameworks for photocatalytic hydrogen production from water. Chem 5, 1632–1647 (2019).

    Article  Google Scholar 

  183. Liu, W. et al. A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO2 reduction. J. Am. Chem. Soc. 141, 17431–17440 (2019).

    Article  Google Scholar 

  184. Bi, S. et al. Vinylene-bridged two-dimensional covalent organic frameworks via Knoevenagel condensation of tricyanomesitylene. J. Am. Chem. Soc. 142, 11893–11900 (2020).

    Article  Google Scholar 

  185. Xu, Q. et al. Template conversion of covalent organic frameworks into 2D conducting nanocarbons for catalyzing oxygen reduction reaction. Adv. Mater. 30, 1706330 (2018).

    Article  Google Scholar 

  186. Xu, H. et al. Catalytic covalent organic frameworks via pore surface engineering. Chem. Commun. 50, 1292–1294 (2014).

    Article  Google Scholar 

  187. Wang, X. et al. Homochiral 2D porous covalent organic frameworks for heterogeneous asymmetric catalysis. J. Am. Chem. Soc. 138, 12332–12335 (2016).

    Article  Google Scholar 

  188. Ma, H.-C., Chen, G.-J., Huang, F. & Dong, Y.-B. Homochiral covalent organic framework for catalytic asymmetric synthesis of a drug intermediate. J. Am. Chem. Soc. 142, 12574–12578 (2020).

    Article  Google Scholar 

  189. Han, X. et al. Chiral covalent organic frameworks with high chemical stability for heterogeneous asymmetric catalysis. J. Am. Chem. Soc. 139, 8693–8697 (2017).

    Article  Google Scholar 

  190. Tan, K. T., Tao, S., Huang, N. & Jiang, D. Water cluster in hydrophobic crystalline porous covalent organic frameworks. Nat. Commun. 12, 6747 (2021). This work showcases water confinement control in the COF channels.

    Article  ADS  Google Scholar 

  191. Nguyen, H. L. et al. A porous covalent organic framework with voided square grid topology for atmospheric water harvesting. J. Am. Chem. Soc. 142, 2218–2221 (2020).

    Article  Google Scholar 

  192. Biswal, B. P. et al. Pore surface engineering in porous, chemically stable covalent organic frameworks for water adsorption. J. Mater. Chem. A 3, 23664–23669 (2015).

    Article  Google Scholar 

  193. Sun, Q. et al. Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration. Adv. Mater. 30, 1705479 (2018).

    Article  ADS  Google Scholar 

  194. Li, Y., Yang, C.-X., Qian, H.-L., Zhao, X. & Yan, X.-P. Carboxyl-functionalized covalent organic frameworks for the adsorption and removal of triphenylmethane dyes. ACS Appl. Nano Mater. 2, 7290–7298 (2019).

    Article  Google Scholar 

  195. Furukawa, H. & Yaghi, O. M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 131, 8875–8883 (2009).

    Article  Google Scholar 

  196. Kahveci, Z., Islamoglu, T., Shar, G. A., Ding, R. & El-Kaderi, H. M. Targeted synthesis of a mesoporous triptycene-derived covalent organic framework. CrystEngComm 15, 1524–1527 (2013).

    Article  Google Scholar 

  197. Zhai, L., Huang, N., Xu, H., Chen, Q. & Jiang, D. A backbone design principle for covalent organic frameworks: the impact of weakly interacting units on CO2 adsorption. Chem. Commun. 53, 4242–4245 (2017).

    Article  Google Scholar 

  198. Huang, N., Chen, X., Krishna, R. & Jiang, D. Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization. Angew. Chem. Int. Ed. 54, 2986–2990 (2015).

    Article  Google Scholar 

  199. Huang, N., Zhai, L., Xu, H. & Jiang, D. Stable covalent organic frameworks for exceptional mercury removal from aqueous solutions. J. Am. Chem. Soc. 139, 2428–2434 (2017).

    Article  Google Scholar 

  200. Ding, S.-Y. et al. Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury(II). J. Am. Chem. Soc. 138, 3031–3037 (2016).

    Article  Google Scholar 

  201. Sun, Q. et al. Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal. J. Am. Chem. Soc. 139, 2786–2793 (2017).

    Article  Google Scholar 

  202. Li, Z. et al. Three-dimensional ionic covalent organic frameworks for rapid, reversible, and selective ion exchange. J. Am. Chem. Soc. 139, 17771–17774 (2017).

    Article  Google Scholar 

  203. Garai, B. et al. Taming the topology of calix[4]arene-based 2D-covalent organic frameworks: interpenetrated vs noninterpenetrated frameworks and their selective removal of cationic dyes. J. Am. Chem. Soc. 143, 3407–3415 (2021).

    Article  Google Scholar 

  204. Wang, P. et al. High-precision size recognition and separation in synthetic 1D nanochannels. Angew. Chem. Int. Ed. 58, 15922–15927 (2019).

    Article  Google Scholar 

  205. Ning, G.-H. et al. Salicylideneanilines-based covalent organic fframeworks as chemoselective molecular sieves. J. Am. Chem. Soc. 139, 8897–8904 (2017).

    Article  Google Scholar 

  206. Qian, H.-L., Yang, C.-X. & Yan, X.-P. Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation. Nat. Commun. 7, 12104 (2016).

    Article  ADS  Google Scholar 

  207. Li, X. et al. Tuneable near white-emissive two-dimensional covalent organic frameworks. Nat. Commun. 9, 2335 (2018).

    Article  ADS  Google Scholar 

  208. Li, Z. et al. Editing light emission with stable crystalline covalent organic frameworks via wall surface perturbation. Angew. Chem. Int. Ed. 60, 19419–19427 (2021).

    Article  Google Scholar 

  209. Jhulki, S. et al. Humidity sensing through reversible isomerization of a covalent organic framework. J. Am. Chem. Soc. 142, 783–791 (2020).

    Article  Google Scholar 

  210. Koh, J. X., Geng, K. & Jiang, D. Smart covalent organic frameworks: dual channel sensors for acids and bases. Chem. Commun. 57, 9418–9421 (2021).

    Article  Google Scholar 

  211. Han, X. et al. Chiral induction in covalent organic frameworks. Nat. Commun. 9, 1294 (2018).

    Article  ADS  Google Scholar 

  212. Peng, Y. et al. Ultrathin two-dimensional covalent organic framework nanosheets: preparation and application in highly sensitive and selective DNA detection. J. Am. Chem. Soc. 139, 8698–8704 (2017).

    Article  Google Scholar 

  213. Chen, S., Yuan, B., Liu, G. & Zhang, D. Electrochemical sensors based on covalent organic frameworks: a critical review. Front. Chem. 8, 601044 (2020).

    Article  ADS  Google Scholar 

  214. Kandambeth, S., Kale, V. S., Shekhah, O., Alshareef, H. N. & Eddaoudi, M. 2D covalent-organic framework electrodes for supercapacitors and rechargeable metal-ion batteries. Adv. Energy Mater. 12, 2100177 (2022).

    Article  Google Scholar 

  215. Li, J. et al. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem. Soc. Rev. 49, 3565–3604 (2020).

    Article  Google Scholar 

  216. Zhao, X., Pachfule, P. & Thomas, A. Covalent organic frameworks (COFs) for electrochemical applications. Chem. Soc. Rev. 50, 6871–6913 (2021).

    Article  Google Scholar 

  217. Xu, F. et al. Radical covalent organic frameworks: a general strategy to immobilize open-accessible polyradicals for high-performance capacitive energy storage. Angew. Chem. Int. Ed. 54, 6814–6818 (2015).

    Article  Google Scholar 

  218. Xu, F. et al. Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage. Sci. Rep. 5, 8225 (2015).

    Article  Google Scholar 

  219. Haldar, S., Roy, K., Kushwaha, R., Ogale, S. & Vaidhyanathan, R. Chemical exfoliation as a controlled route to enhance the anodic performance of COF in LIB. Adv. Energy Mater. 9, 1902428 (2019).

    Article  Google Scholar 

  220. Yang, D.-H. et al. Structure-modulated crystalline covalent organic frameworks as high-rate cathodes for Li-ion batteries. J. Mater. Chem. A 4, 18621–18627 (2016).

    Article  Google Scholar 

  221. Xu, F. et al. Energy-storage covalent organic frameworks: improving performance via engineering polysulfide chains on walls. Chem. Sci. 10, 6001–6006 (2019).

    Article  Google Scholar 

  222. Xu, Q. et al. Boosting lithium–sulfur battery performance by integrating a redox-active covalent organic framework in the separator. ACS Appl. Energy Mater. 2, 5793–5798 (2019).

    Article  Google Scholar 

  223. Jiang, C. et al. Constructing universal ionic sieves via alignment of two-dimensional covalent organic frameworks (COFs). Angew. Chem. Int. Ed. 57, 16072–16076 (2018).

    Article  Google Scholar 

  224. Peng, Y. et al. Mechanoassisted synthesis of sulfonated covalent organic frameworks with high intrinsic proton conductivity. ACS Appl. Mater. Interfaces 8, 18505–18512 (2016).

    Article  Google Scholar 

  225. Sasmal, H. S. et al. Superprotonic conductivity in flexible porous covalent organic framework membranes. Angew. Chem. Int. Ed. 57, 10894–10898 (2018).

    Article  Google Scholar 

  226. Li, J., Wang, J., Wu, Z., Tao, S. & Jiang, D. Ultrafast and stable proton conduction in polybenzimidazole covalent organic frameworks via confinement and activation. Angew. Chem. Int. Ed. 60, 12918–12923 (2021).

    Article  Google Scholar 

  227. Feriante, C. et al. New mechanistic insights into the formation of imine-linked two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 142, 18637–18644 (2020).

    Article  Google Scholar 

  228. Xu, Q., Tao, S., Jiang, Q. & Jiang, D. Ion conduction in polyelectrolyte covalent organic frameworks. J. Am. Chem. Soc. 140, 7429–7432 (2018).

    Article  Google Scholar 

  229. Xu, Q., Tao, S., Jiang, Q. & Jiang, D. Designing covalent organic frameworks with a tailored ionic interface for ion transport across one-dimensional channels. Angew. Chem. Int. Ed. 59, 4557–4563 (2020).

    Article  Google Scholar 

  230. Zhang, G. et al. Accumulation of glassy poly(ethylene oxide) anchored in a covalent organic framework as a solid-state Li+ electrolyte. J. Am. Chem. Soc. 141, 1227–1234 (2018).

    Article  Google Scholar 

  231. Hu, Y. et al. Crystalline lithium imidazolate covalent organic frameworks with high Li-ion conductivity. J. Am. Chem. Soc. 141, 7518–7525 (2019).

    Article  Google Scholar 

  232. Tao, S. et al. Hydroxide anion transport in covalent organic frameworks. J. Am. Chem. Soc. 143, 8970–8975 (2021). This meticulous work describes anion transport in COFs with a detailed investigation.

    Article  Google Scholar 

  233. Huang, N., Wang, P. & Jiang, D. Covalent organic frameworks: a materials platform for structural and functional designs. Nat. Rev. Mater. 1, 16068 (2016).

    Article  ADS  Google Scholar 

  234. Lohse, M. S. & Bein, T. Covalent organic frameworks: structures, synthesis, and applications. Adv. Funct. Mater. 28, 1705553 (2018).

    Article  Google Scholar 

  235. Chen, X. et al. Covalent organic frameworks: chemical approaches to designer structures and built-In functions. Angew. Chem. Int. Ed. 59, 5050–5091 (2020).

    Article  ADS  Google Scholar 

  236. Spitzer, S. et al. Solvent-free on-surface synthesis of boroxine COF monolayers. Chem. Commun. 53, 5147–5150 (2017).

    Article  Google Scholar 

  237. Cai, Z. F. et al. Electric-field-mediated reversible transformation between supramolecular networks and covalent organic frameworks. J. Am. Chem. Soc. 141, 11404–11408 (2019).

    Article  Google Scholar 

  238. Wang, S., Yang, L., Xu, K., Chen, H. & Huang, N. De Novo fabrication of large-area and self-standing covalent organic framework films for efficient separation. ACS Appl. Mater. Interfaces 13, 44806–44813 (2021).

    Article  Google Scholar 

  239. Li, R. L. et al. Controlled growth of imine-linked two-dimensional covalent organic framework nanoparticles. Chem. Sci. 10, 3796–3801 (2019).

    Article  ADS  Google Scholar 

  240. Nagai, A. et al. Pore surface engineering in covalent organic frameworks. Nat. Commun. 2, 536 (2011). This work reports the pore surface engineering strategy for designing and constructing COFs with tailor-made pores that are used in many latter studies.

    Article  ADS  Google Scholar 

  241. Li, Z., He, T., Gong, Y. & Jiang, D. Covalent organic frameworks: pore design and interface engineering. Acc. Chem. Res. 53, 1672–1685 (2020).

    Article  Google Scholar 

  242. Emmerling, S. T. et al. In situ monitoring of mechanochemical covalent organic framework formation reveals templating effect of liquid additive. Chem 7, 1639–1652 (2021).

    Article  Google Scholar 

  243. Seki, T. et al. Real-time study of on-water chemistry: surfactant monolayer-assisted growth of a crystalline quasi-2D polymer. Chem 7, 2758–2770 (2021).

    Article  Google Scholar 

  244. Zhan, G. et al. Observing polymerization in 2D dynamic covalent polymers. Nature 603, 835–840 (2022).

    Article  ADS  Google Scholar 

  245. Sanchez-Lengeling, B. & Aspuru-Guzik, A. Inverse molecular design using machine learning: generative models for matter engineering. Science 361, 360–365 (2018).

    Article  ADS  Google Scholar 

  246. Wang, Y. et al. Toward designing highly conductive polymer electrolytes by machine learning assisted coarse-grained molecular dynamics. Chem. Mater. 32, 4144–4151 (2020).

    Article  Google Scholar 

  247. Chen, Z., Kirlikovali, K. O., Li, P. & Farha, O. K. Reticular chemistry for highly porous metal–organic frameworks: the chemistry and applications. Acc. Chem. Res. 55, 579–591 (2022).

    Article  Google Scholar 

  248. Ma, N. & Horike, S. Metal–organic network-forming glasses. Chem. Rev. 122, 4163–4203 (2022).

    Article  Google Scholar 

  249. Kang, S., Kim, G.-H. & Park, S.-J. Conjugated block copolymers for functional nanostructures. Acc. Chem. Res. 55, 2224–2234 (2022).

    Article  Google Scholar 

  250. Li, J., Zhou, X., Wang, J. & Li, X. Two-dimensional covalent organic frameworks (COFs) for membrane separation: a mini review. Ind. Eng. Chem. Res. 58, 15394–15406 (2019).

    Article  Google Scholar 

  251. Dogru, M. & Bein, T. On the road towards electroactive covalent organic frameworks. Chem. Commun. 50, 5531–5546 (2014).

    Article  Google Scholar 

  252. Wang, S. et al. Semiconductive covalent organic frameworks: structural design, synthesis, and application. Small Struct. 1, 2000021 (2020).

    Article  Google Scholar 

  253. Esrafili, A., Wagner, A., Inamdar, S. & Acharya, A. P. Covalent organic frameworks for biomedical applications. Adv. Healthc. Mater. 10, 2002090 (2021).

    Article  Google Scholar 

  254. Liu, X. et al. Recent advances in covalent organic frameworks (COFs) as a smart sensing material. Chem. Soc. Rev. 48, 5266–5302 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

D.J. acknowledges Singapore Ministry of Education (MOE) Tier 2 grants (MOE-T2EP10220-0004 and MOE-T2EP10221-0006), MOE Tier 1 grants (A-0008368-00-00 and A-0008369-00-00) and an A* star grant (U2102d2004). A.T. is grateful for support from the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation) under Germany′s Excellence Strategy — EXC 2008-390540038 — UniSysCat. S.G. acknowledges the Alexander von Humboldt Stiftung for a postdoctoral fellowship. Z.W. and X.F. acknowledge the EU Graphene Flagship (GrapheneCore3, no. 881603), ERC Consolidator Grant (T2DCP), DFG project (2D polyanilines, no. 426572620), CRC 1415 (Chemistry of Synthetic Two-Dimensional Materials, no. 417590517) and SPP 2244 (2DMP). F.Z. and D.R.-S.-M. acknowledge Ministerio de Ciencia e Innovación through project PID2019-106268GB-C32. W.W. acknowledges financial support by the National Natural Science Foundation of China (Nos. 92056202 and 21903041) and the 111 project 2.0 (BP1221004). N.H. acknowledges the National Natural Science Foundation of China (No. 92163131).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. All authors contributed substantially to discussion of the content. S.G. and A.T. wrote Irreversible reactions. Z.W. and X.F. wrote Thin films, Composites and Outlook. F.W. and N.H. wrote Reproducibility and data deposition, Limitations and optimizations, and Outlook. D.R.-S.-M. and F.Z. wrote Processable COFs and Energy storage. J.F. and W.W. wrote Single-crystal formation. D.J. and K.T.T. wrote the rest of the sections, reviewed and edited the manuscript and prepared the figures before submission.

Corresponding author

Correspondence to Donglin Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Kailong Jin, Fan Zhang, Zhongyi Jiang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

π interactions

Non-covalent interactions that involve the π system.

Covalent bonds

Regions of relatively high electron density between nuclei that arise at least partly from sharing of electrons and give rise to an attractive force and characteristic internuclear distance.

Knots

Organic molecules with multiple reactive points to enable the branching of a polymeric backbone and that locate on the lattice vertex.

Linkers

Organic molecules with multiple reactive points that connect knots.

Non-covalent interactions

Forces that do not involve the sharing of electrons but involve dispersed electromagnetic interactions.

Polycondensation reactions

Polymerizations in which the growth of polymer chains proceeds by condensation reactions between molecules of all degrees of polymerization.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, K.T., Ghosh, S., Wang, Z. et al. Covalent organic frameworks. Nat Rev Methods Primers 3, 1 (2023). https://doi.org/10.1038/s43586-022-00181-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-022-00181-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing