Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Synthesis of main-chain-type triphenylarsine polymers

Abstract

Increasing attention has been given to arsenic-containing π-conjugated polymers. Herein, π-conjugated polymers with triphenylarsine (AsPh3) units in the main chains were synthesized from bis(p-bromophenyl)phenylarsine by Suzuki-Miyaura polycondensation. Compared with the model compounds, it was revealed that the conjugation length was expanded through the main chain. This is the first study on the synthesis and optical properties of main-chain-type AsPh3 polymers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gon M, Tanaka K, Chujo Y. Recent progress in the development of advanced element-block materials. Polym J. 2018;50:109–26.

    Article  CAS  Google Scholar 

  2. Gon M, Tanaka K, Chujo Y. Creative synthesis of organicinorganic molecular hybrid materials. Bull Chem Soc Jpn. 2017;90:463–74.

    Article  CAS  Google Scholar 

  3. Vidal F, Jäkle F. Functional polymeric materials based on main-group elements. Angew Chem Int Ed. 2019;58:5846–70.

    Article  CAS  Google Scholar 

  4. Gates DP. Inorganic and organometallic polymers. Annu Rep Prog Chem Sect A. 2006;102:449–68.

    Article  CAS  Google Scholar 

  5. Chujo Y, Tanaka K. New polymeric materials based on element-blocks. Bull Chem Soc Jpn. 2015;88:633–43.

    Article  CAS  Google Scholar 

  6. Tay WS, Pullarkat SA. C−As bond formation reactions for the preparation of organoarsenic(III) compounds. Chem Asian J. 2020;15:2428–36.

    Article  CAS  PubMed  Google Scholar 

  7. Tanaka J, Davis TP, Wilson P. Organic arsenicals as functional motifs in polymer and biomaterials science. Macromol Rapid Commun. 2018;39:1–24.

    Article  Google Scholar 

  8. Imoto H. Development of macromolecules and supramolecules based on silicon and arsenic chemistries. Polym J. 2018;50:837–46.

    Article  CAS  Google Scholar 

  9. Imoto H, Naka K. Recent progress on arsenic-containing functional polymers. Polymer. 2022;241:124464.

    Article  CAS  Google Scholar 

  10. Imoto H, Naka K. The dawn of functional organoarsenic chemistry. Chemistry 2019;25:1883–94.

    Article  CAS  PubMed  Google Scholar 

  11. Reesor JWB, Wright GF. Arsenobenzene-dimetal adducts. J Org Chem. 1957;22:382–5.

    Article  CAS  Google Scholar 

  12. Elmes PS, Middleton S, West BO. Cyclic phosphines and arsines. II. Cyclic arsines. Aust J Chem. 1970;23:1559–70.

    Article  CAS  Google Scholar 

  13. Naka K, Umeyama T, Chujo Y. Synthesis of poly(vinylene-arsine)s: Alternating radical copolymerization of arsenic atomic biradical equivalent and phenylacetylene. J Am Chem Soc. 2002;124:6600–3.

    Article  CAS  PubMed  Google Scholar 

  14. Kato T, Tanaka S, Naka K. In-situ iodination of organoarsenic homocycles: facile synthesis of 9-arsafluorene. Chem Lett. 2015;44:1476–8.

    Article  CAS  Google Scholar 

  15. Tanaka S, Imoto H, Yumura T, Naka K. Arsenic halogenation of 9-arsafluorene and utilization for As-C bond formation reaction. Organometallics. 2017;36:1684–7.

    Article  CAS  Google Scholar 

  16. Tanaka S, Imoto H, Kato T, Naka K. A practical method for the generation of organoarsenic nucleophiles towards the construction of a versatile arsenic library. Dalt Trans. 2016;45:7937–40.

    Article  CAS  Google Scholar 

  17. Umeyama T, Naka K, Chujo Y. Radical copolymerization of cyclic diarsine with vinyl monomers. J Polym Sci Part A Polym Chem. 2004;42:3023–8.

    Article  CAS  Google Scholar 

  18. Umeyama T, Naka K, Nakahashi A, Chujo Y. Radical copolymerization of acetylenic compounds with phenyl-substituted cyclooligoarsine: substituent effect and optical properties. Macromolecules. 2004;37:1271–5.

    Article  CAS  Google Scholar 

  19. Umeyama T, Naka K, Chujo Y. Radical terpolymerization of organoarsenic homocycle, phenylacetylene, and vinyl or butadienyl monomers. Macromolecules. 2004;37:3623–9.

    Article  CAS  Google Scholar 

  20. Green JP, Han Y, Kilmurray R, McLachlan MA, Anthopoulos TD, Heeney M. An air-stable semiconducting polymer containing dithieno[3,2-b:2′,3′-d]arsole. Angew. Chemie. 2016;55:7148–51.

    Article  CAS  Google Scholar 

  21. Matsumura Y, Ishidoshiro M, Irie Y, Imoto H, Naka K, Tanaka K, et al. Arsole-containing π-conjugated polymer by the post-element-transformation technique. Angew Chem - Int Ed 2016;55:15040–3.

    Article  CAS  Google Scholar 

  22. Kato T, Imoto H, Tanaka S, Ishidoshiro M, Naka K. Facile synthesis and properties of dithieno[3,2-: B:2′,3′- d] arsoles. Dalt. Trans.2016;45:11338–45.

    Article  CAS  Google Scholar 

  23. Fell VHK, Mikosch A, Steppert A-K, Ogieglo W, Senol E, Canneson D, et al. Synthesis and optical characterization of hybrid organic-inorganic heterofluorene polymers. Macromolecules. 2017;50:2338–43.

    Article  CAS  Google Scholar 

  24. Yamazawa C, Imoto H, Naka K. Syntheses of dithienoarsole-containing polymers via suzuki-miyaura and sonogashira-hagihara coupling reactions. Chem Lett. 2018;47:887–90.

    Article  CAS  Google Scholar 

  25. Imoto H, Yamazawa C, Hayashi S, Aono M, Naka K. Electropolymerization of dithieno[3,2-b:2’,3’-d]arsole. ChemElectroChem. 2018;5:3357–60.

    Article  CAS  Google Scholar 

  26. Green JP, Cha H, Shahid M, Creamer A, Durrant JR, Heeney M. Dithieno[3,2-b:2’,3’-d] arsole-containing conjugated polymers in organic photovoltaic devices. Dalt. Trans.2019;48:6676–9.

    Article  CAS  Google Scholar 

  27. Tanaka S, Enoki T, Imoto H, Ooyama Y, Ohshita J, Kato T, et al. Highly efficient singlet oxygen generation and high oxidation resistance enhanced by arsole-polymer-based photosensitizer: application as a recyclable photooxidation catalyst. Macromolecules. 2020;53:2006–13.

    Article  CAS  Google Scholar 

  28. Yamazawa C, Hirano Y, Imoto H, Tsutsumi N, Naka K. Superior light-resistant dithieno[3,2-b:2′,3′-d]arsole-based polymers exhibiting ultrastable amplified spontaneous emission. Chem Commun.2021;57:1595–8.

    Article  CAS  Google Scholar 

  29. Kihara H, Imoto H, Naka K. Practical syntheses and luminescent properties of arene-substituted arsines. Asian J Org Chem. 2021;10:2682–9.

    Article  CAS  Google Scholar 

  30. Akioka I, Sumida A, Urushizaki A, Imoto H, Naka K. (p-(Diphenylarsino)phenyl)diphenylphosphine as a novel template for heterodinuclear complexes. Asian J Org Chem. 2021;10:375–81.

    Article  CAS  Google Scholar 

  31. Wen S, Wu Y, Wang Y, Li Y, Liu L, Jiang H, et al. Pyran-bridged indacenodithiophene as a building block for constructing efficient A–D–A-type nonfullerene acceptors for polymer solar cells. ChemSusChem. 2018;11:360–6.

    Article  CAS  PubMed  Google Scholar 

  32. Son SY, Lee G-Y, Kim S, Park W-T, Park SA, Noh Y-Y, et al. Control of crystallite orientation in diketopyrrolopyrrole-based semiconducting polymers via tuning of intermolecular interactions. ACS Appl Mater Interfaces. 2019;11:10751–7.

    Article  CAS  PubMed  Google Scholar 

  33. Chen ZQ, Chen T, Liu J-X, Zhang G-F, Li C, Gong W-L, et al. Geminal cross-coupling of 1,1-dibromoolefins facilitating multiple topological π-conjugated tetraarylethenes. Macromolecules. 2015;48:7823–35.

    Article  CAS  Google Scholar 

  34. Zalesskiy SS, Ananikov VP. Pd2(dba)3 as a precursor of soluble metal complexes and nanoparticles: Determination of palladium active species for catalysis and synthesis. Organometallics. 2012;31:2302–9.

    Article  CAS  Google Scholar 

  35. Kinoshita K, Mihashi K. Fluorescence measurements, application to bioscience, measurement method, Series 3. Spectroscopical Society of Japan, Academic Publication Center; 1983.

  36. Rigaku Oxford Diffraction, T. CrysAlisPro: data collection and processing software. 196–8666 (2020).

  37. Clark RC, Reid JS. The analytical calculation of absorption in multifaceted crystals. Acta Crystallogr Sect A. 1995;A51:887–97.

    Article  CAS  Google Scholar 

  38. Sheldrick GM. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr Sect A. 2015;A71:3–8.

    Article  Google Scholar 

  39. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 2009;42:339–41.

    Article  CAS  Google Scholar 

  40. Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallogr Sect C. 2015;C71:3–8.

    Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 16 Revision C.01. Wallingford CT: Gaussian, Inc.; 2016.

    Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI, Grant Number 20H02812 (Grant-in-Aid for Scientific Research (B)), and the Ogasawara Foundation for the Promotion of Science & Engineering to HI.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hiroaki Imoto or Kensuke Naka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kihara, H., Imoto, H. & Naka, K. Synthesis of main-chain-type triphenylarsine polymers. Polym J 55, 555–563 (2023). https://doi.org/10.1038/s41428-022-00653-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00653-9

Search

Quick links