Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Formation of shish-like fibril crystals from the melt of blends of cyclic and linear polyethylene under shear flow

Abstract

The role of chain entanglements in shear-induced crystallization is one of the most important unsolved problems. The entanglements formed by topologically distinct cyclic and linear polymers are particularly notable. The shear-induced crystallization behavior of a blend of cyclic polyethylene (C-PE) and linear polyethylene (L-PE) was investigated. Using C-PE as a matrix and L-PE as an additive, we changed the molecular weight and blend ratio of C-PE and L-PE and measured the formation rate of shish-like fibril crystals, I. In both blend systems of C-PE(230k)/L-PE(42k) and C-PE(230k)/L-PE(104k), where the values in parentheses represent the molecular weight, I reached a maximum at a certain weight fraction of L-PE, ΦL-PE. As the ΦL-PE was increased, that is, the entanglement density was increased, the formation of the oriented melt was promoted while crystallization was simultaneously suppressed by entanglements. The maximum value of I was observed owing to these two competing factors. Similar behavior was observed in the blend systems of C-PE(230k)/L-PE(42k), C-PE(130k)/L-PE(42k), and C-PE(86k)/L-PE(42k).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Keller A, Machin MJ. Oriented crystallization in polymers. J Macromol Sci Part B: Phys. 1967;1:41–91.

    Article  CAS  Google Scholar 

  2. Keller A, Willmouth FM. Lattice orientation within stirring-induced crystals of polyethylene. J Macromol Sci Part B: Phys. 1972;B6:539–44.

    Article  Google Scholar 

  3. Pennings AJ, Kiel AM. Fractionation of polymers by crystallization from solution, III. On the morphology of fibrillar polyethylene crystals grown in solution. Kolloid Z Z Polym. 1965;205:160–2.

    Article  CAS  Google Scholar 

  4. Pennings AJ, van der Mark JMAA, Kiel AM. Hydrodynamically induced crystallization of polymers from solution. Colloid Polym Sci. 1970;237:336–58.

    CAS  Google Scholar 

  5. Pennings AJ. Bundle-like nucleation and longitudinal growth of fibrillar polymer crystals from flowing solutions. J Polym Sci: Polym Symp. 1977;59:55–86.

    CAS  Google Scholar 

  6. Mitsuhashi S. On polyethylene crystals grown from flowing solutions in xylene. Bull Text Res Inst. 1963;66:1–9.

    Google Scholar 

  7. Bashir Z, Odell JA, Keller A. High modulus filaments of polyethylene with lamellar structure by melt processing; the role of the high molecular weight component. J Mater Sci. 1984;19:3713–25.

    Article  CAS  Google Scholar 

  8. Bashir Z, Odell JA, Keller A. Stiff and strong polyethylene with shish kebab morphology by continuous melt extrusion. J Mater Sci. 1986;21:3993–4002.

    Article  CAS  Google Scholar 

  9. Eder G, Janeschitz-Kriegl H, Liedauer S, Schausberger A, Stadlbauer W, Schindlauer G. The influence of molar mass distribution on the complex moduli of polymer melts. J Rheol. 1989;33:805–20.

    Article  CAS  Google Scholar 

  10. Liedauer S, Eder G, Janeschitz-Kriegl H, Jerschow P, Geymayer W, Ingolic E. On the kinetics of shear-induced crystallization in polypropylene. Int Polym Process. 1993;8:236–44.

    Article  CAS  Google Scholar 

  11. Liedauer S, Eder G, Janeschitz-Kriegl H. On the limitations of shear induced crystallization in polypropylene melts. Int Polym Process. 1995;10:243–50.

    Article  CAS  Google Scholar 

  12. Jerschow P, Janeschitz-Kriegl H. On the development of oblong particles as precursors for polymer crystallization from shear flow: origin of the so-called fine grained layers. Rheol Acta. 1996;35:127–33.

    Article  CAS  Google Scholar 

  13. Jerschow P, Janeschitz-Kriegl H. The role of long molecules and nucleating agents in shear induced crystallization of isotactic polypropylenes. Int Polym Process. 1997;12:72–77.

    Article  CAS  Google Scholar 

  14. Keller A, Kolnaar HWH. Flow induced orientation and structure formation. In: Meijer H, editor. Processing of polymers. Weinheim: Wiley-VCH; 1997;18. p. 189–268.

  15. de Gennes PG. Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients. J Chem Phys. 1974;60:5030–42.

    Article  Google Scholar 

  16. Lieberwirth L, Loos J, Petermann J, Keller A. Observation of shish crystal growth into nondeformed melts. J Polym Sci Part B: Polym Phys. 2000;38:1183–7.

    Article  CAS  Google Scholar 

  17. Somani RH, Yang L, Zhu L, Hsiao BS. Flow-induced shish-kebab precursor structures in entangled polymer melts. Polymer. 2005;46:8587–623.

    Article  CAS  Google Scholar 

  18. Ogino Y, Fukushima H, Matsuba G, Takahashi N, Nishida K, Kanaya T. Effects of high molecular weight component on crystallization of polyethylene under shear flow. Polymer. 2006;47:5669–77.

    Article  CAS  Google Scholar 

  19. Kumaraswamy G, Verma RK, Issaian AM, Wang P, Kornfield JA, Yeh F, et al. Shear-enhanced crystallization in isotactic polypropylene Part 2. Analysis of the formation of the oriented “skin”. Polymer. 2000;41:8931–40.

    Article  CAS  Google Scholar 

  20. Kumaraswamy G, Kornfield JA, Yeh F, Hsiao BS. Shear-enhanced crystallization in isotactic polypropylene. 3. Evidence for a kinetic pathway to nucleation. Macromolecules. 2002;35:1762–9.

    Article  CAS  Google Scholar 

  21. Somani RH, Yang L, Hsiao BS. Precursors of primary nucleation induced by flow in isotactic polypropylene. Phys A. 2002;304:145–57.

    Article  CAS  Google Scholar 

  22. Sharma L, Ogino Y, Kanaya T. Shish kebab morphology induced in polyhydroxybutyrate under shear flow. Macromol Mater Eng. 2004;289:1059–67.

    Article  CAS  Google Scholar 

  23. Yamazaki S, Watanabe K, Okada K, Yamada K, Tagashira K, Toda A, et al. Formation mechanism of shish in the oriented melt (I)-bundle nucleus becomes to shish. Polymer. 2005;46:1675–84.

    Article  CAS  Google Scholar 

  24. Yamazaki S, Watanabe K, Okada K, Yamada K, Tagashira K, Toda A, et al. Formation mechanism of shish in the oriented melt (II)-two different growth mechanisms along and perpendicular to the flow direction. Polymer. 2005;46:1685–92.

    Article  CAS  Google Scholar 

  25. Dukovski I, Muthukumar M. Langevin dynamics simulations of early stage shish-kebab crystallization of polymers in extensional flow. J Chem Phys. 2003;118:6648–55.

    Article  CAS  Google Scholar 

  26. Liang S, Wang K, Tang C, Zhang Q, Du R, Fu Q. Unexpected molecular weight dependence of shish-kebab structure in the oriented linear low density polyethylene/high density polyethylene blends. J Chem Phys. 2008;128:174902.

    Article  PubMed  CAS  Google Scholar 

  27. Murase H, Kume T, Hashimoto T. Shear-induced structures in semidilute solution of ultrahigh molecular weight polyethylene at temperature close to equilibrium dissolution temperature. Macromolecules. 2005;38:6656–65.

    Article  CAS  Google Scholar 

  28. Murase H, Kume T, Hashimoto T. Time evolution of structures under shear-induced phase separation and crystallization in semidilute solution of ultrahigh molecular weight polyethylene. Macromolecules. 2005;38:8719–28.

    Article  CAS  Google Scholar 

  29. Murase H, Ohta Y, Hashimoto T. A new scenario of shish-kebab formation from homogeneous solutions of entangled polymers: visualization of structure evolution along the fiber spinning line. Macromolecules. 2011;44:7335–50.

    Article  CAS  Google Scholar 

  30. Murase H, Ohta Y, Hashimoto T. Shear-induced phase separation and crystallization in semidilute solution of ultrahigh molecular weight polyethylene: phase diagram in the parameter space of temperature and shear rate. Polymer. 2009;50:4727–36.

    Article  CAS  Google Scholar 

  31. Fukushima H, Ogino Y, Matsuba G, Nishida K, Kanaya T. Crystallization of polyethylene under shear flow as studied by time resolved depolarized light scattering. effects of shear rate and shear strain. Polymer. 2005;46:1878–85.

    Article  CAS  Google Scholar 

  32. Kanaya T, Matsuba G, Ogino Y, Nishida K. Hierarchic structure of shish-kebab by neutron scattering in a wide Q range. Macromolecules. 2007;40:3650–4.

    Article  CAS  Google Scholar 

  33. Yang L, Somani RH, Sics I, Hsiao BS, Kolb R, Fruitwala H, et al. Shear-induced crystallization precursor studies in model polyethylene blends by in-situ Rheo-SAXS and Rheo-WAXD. Macromolecules. 2004;37:4845–59.

    Article  CAS  Google Scholar 

  34. Kimata S, Sakurai T, Nozue Y, Kasahara T, Yamaguchi N, Karino T, et al. Molecular basis of the shish-kebab morphology in polymer crystallization. Science. 2007;316:1014–7.

    Article  CAS  PubMed  Google Scholar 

  35. Seki M, Thurman DW, Oberhauser JP, Kornfield JA. Shear-mediated crystallization of isotactic polypropylene: the role of long chain-long chain overlap. Macromolecules. 2002;35:2583–94.

    Article  CAS  Google Scholar 

  36. Keum JK, Mao Y, Zuo F, Hsiao BS. Flow-induced crystallization precursor structure in high molecular weight isotactic polypropylene (HMW-iPP)/low molecular weight linear low density polyethylene (LMW-LLDPE) binary blends. Polymer. 2013;54:1425–31.

    Article  CAS  Google Scholar 

  37. Roovers J. The melt properties of ring polystyrenes. Macromolecules. 1985;18:1359–61.

    Article  CAS  Google Scholar 

  38. Roovers J. Viscoelastic properties of polybutadiene rings. Macromolecules. 1988;21:1517–21.

    Article  CAS  Google Scholar 

  39. McKenna GB, Hostetter BJ, Hadjichristidis N, Fetters LJ, Plazek DJ. A study of the linear viscoelastic properties of cyclic polystyrenes using creep and recovery measurements. Macromolecules. 1989;22:1834–52.

    Article  CAS  Google Scholar 

  40. McKenna GB, Hadziioannou G, Lutz P, Hild G, Strazielle C, Straupe C, et al. Dilute solution characterization of cyclic polystyrene molecules and their zero-shear viscosity in the melt. Macromolecules. 1987;20:498–512.

    Article  CAS  Google Scholar 

  41. Córdova ME, Lorenzo AT, Müller AJ, Hoskins JN, Grayson SM. A comparative study on the crystallization behavior of analogous linear and cyclic poly(ε-caprolactones). Macromolecules. 2011;44:1742–6.

    Article  CAS  Google Scholar 

  42. Su HH, Chen HL, Díaz A, Casas MT, Puiggalí J, Hoskins JN, et al. New insights on the crystallization and melting of cyclic PCL chains on the basis of a modified Thomson-Gibbs equation. Polymer. 2013;54:846–59.

    Article  CAS  Google Scholar 

  43. Shin EJ, Jeong W, Brown HA, Koo BJ, Hedrick JL, Waymouth RM. Crystallization of cyclic polymers: synthesis and crystallization behavior of high molecular weight cyclic poly(ε-caprolactone)s. Macromolecules. 2011;44:2773–9.

    Article  CAS  Google Scholar 

  44. Tezuka Y, Ohtsuka T, Adachi K, Komiya R, Ohno N, Okui N. A defect-free ring polymer: size-controlled cyclic poly(tetrahydrofuran) consisting exclusively of the monomer unit. Macromol Rapid Commun. 2008;29:1237–41.

    Article  CAS  Google Scholar 

  45. Takeshita H, Poovarodom M, Kiya T, Arai F, Takenaka K, Miya M, et al. Crystallization behavior and chain folding manner of cyclic, star and linear poly(tetrahydrofuran)s. Polymer. 2012;53:5375–84.

    Article  CAS  Google Scholar 

  46. Ono R, Atarashi H, Yamazaki S, Kimura K. Molecular weight dependence of the growth rate of spherulite of cyclic poly(ε-caprolactone) polymerized by ring expansion reaction. Polymer. 2020;194:122403.

    Article  CAS  Google Scholar 

  47. Pérez RA, Córdova ME, López JV, Hoskins JN, Zhang B, Grayson SM, et al. Nucleation, crystallization, self-nucleation and thermal fractionation of cyclic and linear poly(ε-caprolactone)s. React Funct Polym. 2014;80:71–82.

    Article  CAS  Google Scholar 

  48. Ferry JD. Viscoelastic properties of polymers. John Wiley & Sons, Inc.: New York; 1980.

  49. Mills PJ, Mayer JW, Kramer EJ. Diffusion of polymer rings in linear polymer matrices. Macromolecules. 1987;20:513–8.

    Article  CAS  Google Scholar 

  50. Bielawski CW, Benitez D, Grubbs RH. An “endless” route to cyclic polymers. Science. 2002;297:2041–4.

    Article  CAS  PubMed  Google Scholar 

  51. Fürstner A, Ackermann L, Gabor B, Goddard R, Lehmann CW, Mynott R, et al. Comparative investigation of ruthenium-based metathesis catalysts bearing N-heterocyclic carbene (NHC) ligands. Chem Eur J. 2001;7:3236–53.

    Article  PubMed  Google Scholar 

  52. Bielawski CW, Benitez D, Grubbs RH. Synthesis of cyclic polybutadiene via ring-opening metathesis polymerization: the importance of removing trace linear contaminants. J Am Chem Soc. 2003;125:8424–5.

    Article  CAS  PubMed  Google Scholar 

  53. Hahn SF. An improved method for the diimide hydrogenation of butadiene and isoprene containing polymers. J Polym Sci Part A: Polym Chem. 1992;30:397–407.

    Article  CAS  Google Scholar 

  54. Wunderlich B, Czornyj G. A study of equilibrium melting of polyethylene. Macromolecules. 1977;10:906–13.

    Article  CAS  Google Scholar 

  55. Broadhurst MG. Extrapolation of the orthorhombic n-paraffin melting properties to very long chain lengths. J Chem Phys. 1962;36:2578–81.

    Article  CAS  Google Scholar 

  56. Broadhurst MG. The melting temperatures of the n-paraffins and the convergence temperature for polyethylene. J Res Natl Bur Stand A. 1966;70:481–6.

    Article  CAS  Google Scholar 

  57. Ogino Y, Fukushima H, Takahashi N, Matsuba G, Nishida K, Kanaya T. Crystallization of isotactic polypropylene under shear flow observed in a wide spatial scale. Macromolecules. 2006;39:7617–25.

    Article  CAS  Google Scholar 

  58. Zhao Y, Hayasaka K, Matsuba G, Ito H. In situ observations of flow-induced precursors during shear flow. Macromolecules. 2103;46:172–8.

    Article  CAS  Google Scholar 

  59. Yamazaki S, Hikosaka M, Toda A, Wataoka I, Yamada K, Tagashira K. Nucleation and morphology of polyethylene under shear flow. J Macromol Sci Part B. 2003;42:499–514.

    Article  CAS  Google Scholar 

  60. Yamazaki S, Itoh M, Oka T, Kimura K. Formation and morphology of “shish-like” fibril crystals of aliphatic polyesters from the sheared melt. Eur Polym J. 2010;46:58–68.

    Article  CAS  Google Scholar 

  61. Pennings AJ. Fractionation of polymers by crystallization from solutions. II. J Polym Sci Part C: Polym Sympo. 2007;16:1799–812.

    Article  Google Scholar 

  62. Wang J, Bai J, Zhang Y, Fang H, Wang Z. Shear-induced enhancements of crystallization kinetics and morphological transformation for long chain branched polylactides with different branching degrees. Sci Rep. 2016;6:26560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wunderlich B. Macromolecular physics. Vol 3. Crystal melting. Academic Press: New York; 1980.

  64. An Y, Holt JJ, Mitchell GR, Vaughan AS. Influence of molecular composition on the development of microstructure from sheared polyethylene melts: molecular and lamellar templating. Polymer. 2006;47:5643–56.

    Article  CAS  Google Scholar 

  65. Pantani R, Coccorullo I, Volpe V, Titomanlio G. Shear-induced nucleation and growth in isotactic polypropylene. Macromolecules. 2010;43:9030–8.

    Article  CAS  Google Scholar 

  66. Yang I-K, Wu C-H. Real-time SAXS measurements and rheological behavior of poly(lactic acid) crystallization under continuous shear flow. J Polym Res. 2014;21:609.

    Article  CAS  Google Scholar 

  67. Coccorullo I, Pantani R, Titomanlio G. Spherulitic nucleation and growth rates in an iPP under continuous shear flow. Macromolecules. 2008;41:9214–23.

    Article  CAS  Google Scholar 

  68. Duplay C, Monasse B, Haudin JM, Costa JL. Shear-induced crystallization of polypropylene: influence of molecular weight. J Mater Sci. 2000;35:6093–103.

    Article  CAS  Google Scholar 

  69. Haas TW, Maxwell B. Effects of shear stress on the crystallization of linear polyethylene and polybutene-1. Polym Eng Sci. 1969;9:225–41.

    Article  CAS  Google Scholar 

  70. Wolkowicz MD. Nucleation and crystal growth in sheared poly(1-butene) melts. J Polym Sci: Polym Symp. 2007;63:365–82.

    Google Scholar 

  71. Huo H, Meng Y, Li H, Jiang S, An L. Influence of shear on polypropylene crystallization kinetics. Eur Phys J E. 2004;15:167–75.

    Article  CAS  PubMed  Google Scholar 

  72. Lagasse RR, Maxwell B. An experimental study of the kinetics of polymer crystallization during shear flow. Polym Eng Sci. 1976;16:189–99.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by a Grant-in-Aid for Scientific Research (C) (No. 24550256) from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichi Yamazaki.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, K., Yamazaki, S. & Kimura, K. Formation of shish-like fibril crystals from the melt of blends of cyclic and linear polyethylene under shear flow. Polym J 54, 913–920 (2022). https://doi.org/10.1038/s41428-022-00643-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00643-x

This article is cited by

Search

Quick links