Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Thermal, mechanical, and morphological studies of a depolymerizable graft copolymer thermoplastic

Abstract

Graft polymers are gaining increasing interest because of their unique architectural characteristics. We recently reported a novel type of depolymerizable graft polymer based on poly(trans-cyclobutane fused cyclooctene), in an effort to address the trade-off between depolymerizability and controlled grafting-through polymerization. In this work, we examine the thermal, mechanical, and morphological properties of a graft copolymer thermoplastic material prepared by copolymerizing poly(L-lactide) and margaric acid-based macromonomers. A copolymerization kinetics study reveals that the two macromonomers are incorporated almost randomly and that the domain spacing measured from small-angle X-ray scattering is consistent with the random distribution. An investigation of the crystallization behavior suggests that proper thermal treatment is required to maximize, or to even observe crystallinity. The physical states of the soft and hard domains, whether melt, glassy, or semicrystalline, significantly impact the tensile properties of the resulting copolymer materials. Finally, the rheological properties and morphological features are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Duan Y, Thunga M, Schlegel R, Schneider K, Rettler E, Weidisch R, et al. Morphology and deformation mechanisms and tensile properties of tetrafunctional multigraft copolymers. Macromolecules. 2009;42:4155–64.

    Article  CAS  Google Scholar 

  2. Fournier L, Rivera Mirabal DM, Hillmyer MA. Toward sustainable elastomers from the grafting-through polymerization of lactone-containing polyester macromonomers. Macromolecules. 2022;55:1003–14.

    Article  CAS  Google Scholar 

  3. Zhang J, Schneiderman DK, Li T, Hillmyer MA, Bates FS. Design of graft block polymer thermoplastics. Macromolecules. 2016;49:9108–18.

    Article  CAS  Google Scholar 

  4. Vatankhah-Varnosfaderani M, Daniel WFM, Everhart MH, Pandya AA, Liang H, Matyjaszewski K, et al. Mimicking biological stress-strain behaviour with synthetic elastomers. Nature. 2017;549:497–501.

    Article  PubMed  Google Scholar 

  5. Vatankhah-Varnosfaderani M, Keith AN, Cong Y, Liang H, Rosenthal M, Sztucki M, et al. Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration. Science. 2018;359:1509–13.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang D, Dashtimoghadam E, Fahimipour F, Hu X, Li Q, Bersenev EA, et al. Tissue-adaptive materials with independently regulated modulus and transition temperature. Adv Mater 2020;32:1–11.

    Article  Google Scholar 

  7. Xiong H, Zhang L, Wu Q, Zhang H, Peng Y, Zhao L, et al. A strain-adaptive, self-healing, breathable and perceptive bottle-brush material inspired by skin. J Mater Chem A. 2020;8:24645–54.

    Article  CAS  Google Scholar 

  8. Dashtimoghadam E, Maw M, Keith AN, Vashahi F, Kempkes V, Gordievskaya YD, et al. Super-soft, firm, and strong elastomers toward replication of tissue viscoelastic response. Mater Horiz 2022;9:3022–30.

    Article  CAS  PubMed  Google Scholar 

  9. Sveinbjörnsson BR, Weitekamp RA, Miyake GM, Xia Y, Atwater HA, Grubbs RH. Rapid self-assembly of brush block copolymers to photonic crystals. Proc Natl Acad Sci USA. 2012;109:14332–6.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Guo T, Yu X, Zhao Y, Yuan X, Li J, Ren L. Structure memory photonic crystals prepared by hierarchical self-assembly of semicrystalline bottlebrush block copolymers. Macromolecules. 2020;53:3602–10.

    Article  CAS  Google Scholar 

  11. Zhao TH, Jacucci G, Chen X, Song DP, Vignolini S, Parker RM. Angular-independent photonic pigments via the controlled micellization of amphiphilic bottlebrush block copolymers. Adv Mater 2020;32:1–8.

    Article  Google Scholar 

  12. Zhang J, Li T, Mannion AM, Schneiderman DK, Hillmyer MA, Bates FS. Tough and sustainable graft block copolymer thermoplastics. ACS Macro Lett. 2016;5:407–12.

    Article  CAS  PubMed  Google Scholar 

  13. Haugan IN, Maher MJ, Chang AB, Lin TP, Grubbs RH, Hillmyer MA, et al. Consequences of grafting density on the linear viscoelastic behavior of graft polymers. ACS Macro Lett. 2018;7:525–30.

    Article  CAS  PubMed  Google Scholar 

  14. Leng X, Wei Z, Bian Y, Ren Y, Wang Y, Wang Q, et al. Rheological properties and crystallization behavior of comb-like graft poly(L-lactide): influences of graft length and graft density. RSC Adv. 2016;6:30320–9.

    Article  CAS  Google Scholar 

  15. Hu M, Xia Y, McKenna GB, Kornfield JA, Grubbs RH. Linear rheological response of a series of densely branched brush polymers. Macromolecules. 2011;44:6935–43.

    Article  CAS  Google Scholar 

  16. López-Barrón CR, Tsou AH, Younker JM, Norman AI, Schaefer JJ, Hagadorn JR, et al. Microstructure of crystallizable α-olefin molecular bottlebrushes: isotactic and atactic poly(1-octadecene). Macromolecules. 2018;51:872–83.

  17. Xiang M, Lyu D, Qin Y, Chen R, Liu L, Men Y. Microstructure of bottlebrush poly(n-alkyl methacrylate)s beyond side chain packing. Polymer. 2020;210:123034.

    Article  CAS  Google Scholar 

  18. López-Barrón CR, Hagadorn JR, Mattler SJ, Throckmorton JA. Syndiotactic α-olefin molecular bottlebrushes: crystallization, melting, and hierarchical microstructure. Macromolecules. 2020;53:3778–88.

    Article  Google Scholar 

  19. Wang Z, Yoon S, Wang J. Breaking the paradox between grafting-through and depolymerization to access recyclable graft polymers. Macromolecules. 2022;55:9249–56.

    Article  CAS  Google Scholar 

  20. Zografos A, Lynd NA, Bates FS, Hillmyer MA. Impact of macromonomer molar mass and feed composition on branch distributions in model graft copolymerizations. ACS Macro Lett. 2021;10:1622–8.

    Article  CAS  PubMed  Google Scholar 

  21. Zhao C, Wu D, Huang N, Zhao H. Crystallization and thermal properties of PLLA comb polymer. J Polym Sci B Polym Phys. 2008;46:589–98.

    Article  CAS  Google Scholar 

  22. Neugebauer D, Theis M, Pakula T, Wegner G, Matyjaszewski K. Densely heterografted brush macromolecules with crystallizable grafts. Synthesis and bulk properties. Macromolecules. 2006;39:584–93.

    Article  CAS  Google Scholar 

  23. Fischer EW, Sterzel HJ, Wegner G. Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid-Z Z Für Polym. 1973;251:980–90.

    Article  CAS  Google Scholar 

  24. Xia Y, Olsen BD, Kornfield JA, Grubbs RH. Efficient synthesis of narrowly dispersed brush copolymers and study of their assemblies: the importance of side chain arrangement. J Am Chem Soc. 2009;131:18525–32.

    Article  CAS  PubMed  Google Scholar 

  25. Javni I, Bilić O, Bilić N, Petrović ZS, Eastwood EA, Zhang F, et al. Thermoplastic polyurethanes with controlled morphology based on methylenediphenyldiisocyanate/isosorbide/butanediol hard segments. Polym Int. 2015;64:1607–16.

    Article  CAS  Google Scholar 

  26. Heeley, EL, Billimoria, K, Parsons, N, Figiel, Ł, Keating, EM, Cafolla, CT, et al. In-situ uniaxial drawing of poly-L-lactic acid (PLLA): following the crystalline morphology development using time-resolved SAXS/WAXS. Polymer. 193;2020, https://doi.org/10.1016/j.polymer.2020.122353.

Download references

Acknowledgements

This work was supported by the University of Akron and the National Science Foundation under Grant No. DMR-2042494. We thank Prof. James M. Eagan for glovebox access and Prof. Kevin Cavicchi for helpful discussion. We acknowledge access to the X-ray scattering facility at the Advanced Materials and Liquid Crystal Institute (AMLCI) at Kent State University, which was financially supported by the National Science Foundation (DMR-2017845), the State of Ohio (The Ohio Department of Higher Education Action Fund), and Kent State University. We thank the Ohio Board of Regents and the National Science Foundation (CHE-0341701 and DMR-0414599) for the funds used to purchase the NMR instrument used in this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mark D. Foster or Junpeng Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Foster, M.D. & Wang, J. Thermal, mechanical, and morphological studies of a depolymerizable graft copolymer thermoplastic. Polym J 55, 1171–1178 (2023). https://doi.org/10.1038/s41428-023-00826-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00826-0

Search

Quick links