Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Preparation of amine- and ammonium-containing polysilsesquioxane membranes for CO2 separation

Abstract

Amine-containing polysilsesquioxane (PSQ) membranes were studied with regard to their CO2 separation ability. PSQ membranes were prepared by the sol–gel process using three amine-containing monomers, bis(triethoxysilylpropyl)amine (BTESPA), (aminopropyl)triethoxysilane (APTES), and (aminoethylaminopropyl)triethoxysilane (AEAPTES), to examine the relationship between precursor structure and membrane performance. The CO2 permeances of the membranes prepared by 1:1 copolymerization with bis(triethoxysilyl)ethane increased in the order of AEAPTES-derived membranes < APTES-derived membranes < BTESPA-derived membranes, and their CO2/N2 permselectivities decreased in the same order. On the basis of density functional theory calculations on model systems and nitrogen adsorption-desorption experiments of the PSQ gels, it was found that CO2 affinity and porosity of the membranes were important factors affecting CO2 separation performance. Copolymerization under acidic conditions resulted in the formation of ammonium-containing membranes with improved CO2 permeances and acceptable CO2/N2 permselectivities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Robeson LM. The upper bound revisited. J Membr Sci. 2008;320:390–400.

    Article  CAS  Google Scholar 

  2. Brunetti A, Scura F, Barbieri G, Drioli E. Membrane technologies for CO2 separation. J Membr Sci. 2010;359:115–25.

    Article  CAS  Google Scholar 

  3. Ma C, Wang M, Wang Z, Gao M, Wang J. Recent progress on thin film composite membranes for CO2 separation. J CO2 Utilization. 2020;42:101296.

  4. Yu L, Kanezashi M, Nagasawa H, Tsuru T. Role of amine type in CO2 separation performance within amine functionalized silica/organosilica membranes: a review. Appl Sci. 2018;8:1032.

    Article  Google Scholar 

  5. Yu L, Kanezashi M, Nagasawa H, Tsuru T. Fabrication and CO2 permeation properties of amine-silica membranes using a variety of amine types. J Membr Sci. 2017;541:447–56.

    Article  CAS  Google Scholar 

  6. Yu L, Kanezashi M, Nagasawa H, Moriyama N, Tsuru T, Ito K. Enhanced CO2 separation performance for tertiary amine-silica membranes via thermally induced local liberation of CH3Cl. AIChE J. 2018;64:1528–39.

    Article  CAS  Google Scholar 

  7. Yu L, Kanezashi M, Nagasawa H, Oshita J, Naka A, Tsuru T. Pyrimidine-bridged organoalkoxysilane membrane for high-efficiency CO2 transport via mild affinity. Sep Purif Technol 2017;178:232–41.

    Article  CAS  Google Scholar 

  8. Xomeriakis G, Tsai CY, Brnker CJ. Microporous sol–gel derived aminosilicate membrane for enhanced carbon dioxide separation. Sep Purif Technol. 2005;42:249–57.

    Article  Google Scholar 

  9. Guo M, Kanazashi M, Nagasawa H, Yu L, Ohshita J, Tsuru T. Amino-decorated organosilica membranes for highly permeable CO2 capture. J Membr Sci. 2020;611:118328.

    Article  CAS  Google Scholar 

  10. Paradis GG, Kreiter R, van Tuel MM, Nijmeijer A, Vente JF. Amino-functionalized microporous hybrid silica membranes. J Mater Chem. 2012;22:7258–64.

    Article  CAS  Google Scholar 

  11. Xiu R, Kanezashi M, Guo M, Xu R, Zhong J, Tsuru T. Multiple amine-contained POSS-functionalized organosilica membranes for gas separation. Membranes. 2021;11:194.

    Article  Google Scholar 

  12. Kang WR, Lee AS, Park S, Park SH, Baek KY, Lee KB, et al. Free-standing polysilsesquioxane-based inorganic/organic hybrid membranes for gas separations. J Membr Sci. 2015;475:384–94.

    Article  CAS  Google Scholar 

  13. Karimi S, Mortazavi Y, Khodadadi AA, Holmgren A, Korelskiy D, Hedlund J. Functionalization of silica membranes for CO2 separation. Sep Purif Technol. 2020;235:116207.

    Article  CAS  Google Scholar 

  14. Kaneko Y, Iyi N, Matsumoto T, Kitamura K. Synthesis of rodlike polysiloxane with hexagonal phase by sol–gel reaction of organotrialkoxysilane monomer containing two amino groups. Polymer. 2005;46:1828–33.

    Article  CAS  Google Scholar 

  15. Anggarini U, Yu L, Nagasawa H, Kanezashi M, Tsuru T. Metal-induced microporous aminosilica creates a highly permeable gas-separation membrane. Mater Chem Front. 2021;5:3029.

    Article  CAS  Google Scholar 

  16. Yamamoto K, Koge S, Sasahara K, Mizumo T, Kaneko Y, Kanezashi M, et al. Preparation of bridged polysilsesquioxane membranes from bis[3-(triethoxysilyl)propyl]amine for water desalination. Bull Chem Soc Jpn. 2017;90:1035–40.

    Article  CAS  Google Scholar 

  17. Zheng FT, Yamamoto K, Kanezashi M, Gunji T, Tsuru T, Ohshita J. Preparation of hybrid organosilica reverse osmosis membranes by interfacial polymerization of Bis[(trialkoxysilyl)propyl]amine. Chem Lett. 2018;47:1210–2.

    Article  CAS  Google Scholar 

  18. Tsuru T, Nakasuji T, Oka M, Kanezashi M, Yoshioka T. Preparation of hydrophobic nanoporous methylated SiO2 membranes and application to nanofiltration of hexane solutions. J Membr Sci. 2011;384:149–56.

    Article  CAS  Google Scholar 

  19. Xu R, Wang JH, Kanezashi M, Yoshioka T, Tsuru T. Reverse osmosis performance of organosilica membranes and comparison with the pervaporation and gas permeation properties. AIChE J. 2013;59:1298–307.

    Article  CAS  Google Scholar 

  20. Xu R, Ibrahim SM, Kanezashi M, Yoshioka T, Ito K, Ohshita J, et al. New insights into the microstructure-separation properties of organosilica membranes with ethane, ethylene, and acetylene bridges. ACS Appl Mater Interfaces. 2014;6:9357–64.

    Article  CAS  Google Scholar 

  21. Villaluenga JPG, Seoane B. Experimental estimation of gas-transport properties of linear low-density polyethylene membranes by an integral permeation method. J Appl Polym Sci. 2001;82:3013–21.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joji Ohshita or Toshinori Tsuru.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohshita, J., Okonogi, T., Kajimura, K. et al. Preparation of amine- and ammonium-containing polysilsesquioxane membranes for CO2 separation. Polym J 54, 875–882 (2022). https://doi.org/10.1038/s41428-022-00635-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00635-x

Search

Quick links